Effect of maleic anhydride compatibilizer addition on mechanical properties of polylactic acid (PLA)/cellulose acetate (CA) composites film

Abdul Kholiq, Ika Jumantika, Achmad Syarafuddin As-syirazi, Rahmayetty Rahmayetty

Abstract


Environmental problems caused by the use of undegradable conventional plastics are still the major issue. According to the Badan Pusat Statistik (BPS) in 2021, plastic waste in Indonesia accumulated as much as 66 million tons per year and is expected to raise gradually. PLA and CA, derived from renewable resources, are biodegradable, thermoplastic, resistant to pressure, and are often used as raw materials for the manufacture of composite plastics. PLA is hydrophobic and CA is hydrophilic, so a compatibilizer is needed as a substance that can improve the mechanical properties, compatibility, and homogeneity of the resulting composite film. This research aims to obtain the ratio of PLA/CA and the concentration of maleic anhydride (MA) compatibilizer to produce PLA/CA composites film with good mechanical strength and according to packaging material standards. The method in this research is solvent casting by synthesizing composite films through sample preparation, modification of CA with MA, grafting of PLA/CA and MA, synthesis of composite films of PLA/CA and MA, as well as several characteristic tests. The results showed that the obtained films were identified as having PLA, CA, and MA, had a relatively smooth surface and were degraded at a temperature treatment of 543oC. The best film was obtained from mass variations of PLA/CA and MA (6:4:1.5 gram) with a tensile strength of 7.38 MPa, and elongation at break reached 18.11% and met the packaging standard values by Japanese Industrial Standard (JIS).

Keywords


Composite film; packaging material; solvent casting

Full Text:

PDF

References


Gomaa, S. F., Madkour, T. M., Moghannem, S., & El-Sherbiny, I. M. (2017). New polylactic acid/ cellulose acetate-based antimicrobial interactive single dose nanofibrous wound dressing mats. Int. J. Biol. Macromol., pp. 1–51, doi: 10.1016/j.ijbiomac.2017.07.145.

Lasprilla, A. J. R., Martinez, G. A. R., Lunelli, B. H., Jardini, A. L., & Filho, R. M. (2012). Poly-lactic acid synthesis for application in biomedical devices - A review. Biotechnol. Adv., vol. 30, no. 1, pp. 321–328, doi: 10.1016/j.biotechadv.2011.06.019.

Mofokeng, J. P., & Luyt, A. S. (2015). Morphology and thermal degradation studies of melt-mixed poly(hydroxybutyrate-co-valerate) (PHBV)/poly(ε-caprolactone) (PCL) biodegradable polymer blend nanocomposites with TiO2 as filler. J. Mater. Sci., vol. 50, no. 10, pp. 3812–3824, doi: 10.1007/s10853-015-8950-z.

Zuo, Y., Gu, J., Yang, L., Qiao, Z., Tan, H., & Zhang, Y. (2014). Preparation and characterization of dry method esterified starch/polylactic acid composite materials. Int. J. Biol. Macromol., vol. 64, pp. 174–180, doi: 10.1016/j.ijbiomac.2013.11.026.

Breuer, R., et al. (2019). Development and processing of flame retardant cellulose acetate compounds for foaming applications. J. Appl. Polym. Sci., vol. 137, no. 28, pp. 1–14, doi: 10.1002/app.48863.

Gunawardene, O. H. P., et al. (2021). Compatibilization of starch/synthetic biodegradable polymer blends for packaging applications: A review. J. Compos. Sci., vol. 5, no. 11, pp. 1–33, doi: 10.3390/jcs5110300.

Kalambur, S., & Rizvi, S. S. H. (2006). An overview of starch-based plastic blends from reactive extrusion. J. Plast. Film Sheeting, vol. 22, no. 1, pp. 39–58, doi: 10.1177/8756087906062729.

Rahmayetty, Wardhono, E. Y., Alfirano, & Kanani, N. (2021). The effect of cellulose nanocrystaline blending to the mechanical properties of composite edible film (PLA/CNC). Adv. Biol. Sci. Res. Jt. Proc. 2nd 3rd Int. Conf. Food Secur. Innov. (ICFSI 2018-2019), vol. 9, pp. 100–107, doi: 10.2991/absr.k.210304.018.

Mukaffa, H., et al. (2021). Effect of alkali treatment of piper betle fiber on tensile properties as biocomposite based polylactic acid: Solvent cast-film method. Mater. Today Proc., vol. 48, no. March, pp. 1–5, 2021, doi: 10.1016/j.matpr.2021.02.218.

Nasution, R. S., Nasution, D. Y., Marpongahtun, Muis, Y., & Mahmud. (2013). Kajian sifat fisika matriks komposit polimer dari polipropilen-polipropilena-g-maleat anhidrida dengan alpha-selulosa dari berbagai serat tumbuhan menggunakan divinil benzena sebagai agen pengikat silang. J. Tek. Kim. UNIMED, vol. 05, no. 02, pp. 1–7.

Akil, H. M., Rasyid, M. F. A. & J. Sharif. (2012). Effect of compatibilizer on properties of polypropylene layered silicate nanocomposite. Procedia Chem., vol. 4, pp. 65–72, doi: 10.1016/j.proche.2012.06.010.

Park, H. M., Liang, X., Mohanty, A. K., Misra, M., & Drzal, L. T. (2004). Effect of compatibilizer on nanostructure of the biodegradable cellulose acetate/organoclay nanocomposites. Macromolecules, vol. 37, no. 24, pp. 9076–9082, doi: 10.1021/ma048958s.

Petersson, L., Oksman, K., & Mathew, A. P. (2006). Using maleic anhydride grafted poly(lactic acid) as a compatibilizer in poly(lactic acid)/layered-silicate nanocomposites,” J. Appl. Polym. Sci., vol. 102, no. 2, pp. 1852–1862, doi: 10.1002/app.24121.

Anggresani, H. D. N. (2021). Karakteristik fisikokimia edible film pati ubi jalar ungu (Ipomoea Batatas L. Poir) dengan penambahan ekstrak jahe merah (Zingiber officinale var. Rubrum) serta aplikasinya pada buah nanas potong [Thesis]. Malang: Universitas Muhammadiyah Malang.

Souhoka, F. A., & Latupeirissa, J. (2018). Sintesis dan karakterisasi selulosa asetat (CA). Indo. J. Chem. Res., vol. 5, no. 2, pp. 58–62.

Maharana, T., Pattanaik, S., Routaray, A. Nath, N., & Sutar, A. K. (2015). Synthesis and characterization of poly(lactic acid) based graft copolymers. React. Funct. Polym., vol. 93, pp. 47–67, doi: 10.1016/j.reactfunctpolym.2015.05.006.

Bátori, V. et al. (2018). Synthesis and characterization of Maleic Anhydridegrafted orange waste for potential use in biocomposites. BioResources, vol. 13, no. 3, pp. 4986–4997, doi: 10.15376/biores.13.3.4986-4997.

Castiqliana, Silvia, & Halimatuddahliana. (2016). Pengaruh penambahan maleat Anhidrida-Grafted-Polipropilena terhadap sifat kekuatan bentur dan penyerapan air komposit hibrid plastik bekas kemasan gelas berpengisi serbuk serat ampas tebu dan serbuk serat kaca. J. Tek. Kim. USU, vol. 5, no. 1, pp. 7–12, doi: 10.32734/jtk.v5i1.1518.

Muharrami, L. K. (2014). Analisa DSC terhadap sintesis plastik HDPE–Fly Ash. J. Ilm. Rekayasa, vol. 7, no. 1, pp. 37–42, doi: 10.1007/978-1-4419-0851-3_121.

Yang, Z., Li, X., Si, J., Cui, Z., & Peng, K. (2019). Morphological, Mechanical and Thermal Properties of Poly(lactic acid) (PLA)/Cellulose Nanofibrils (CNF) Composites Nanofiber for Tissue Engineering. J. Wuhan Univ. Technol. Mater. Sci. Ed., vol. 34, no. 1, pp. 207–215, doi: 10.1007/s11595-019-2037-7.




DOI: http://dx.doi.org/10.36055/tjst.v18i2.17306

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Teknika: Jurnal Sains dan Teknologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.