Effect of maleic anhydride compatibilizer addition on mechanical properties of polylactic acid (PLA)/cellulose acetate (CA) composites film
Abstract
Keywords
Full Text:
PDFReferences
Gomaa, S. F., Madkour, T. M., Moghannem, S., & El-Sherbiny, I. M. (2017). New polylactic acid/ cellulose acetate-based antimicrobial interactive single dose nanofibrous wound dressing mats. Int. J. Biol. Macromol., pp. 1–51, doi: 10.1016/j.ijbiomac.2017.07.145.
Lasprilla, A. J. R., Martinez, G. A. R., Lunelli, B. H., Jardini, A. L., & Filho, R. M. (2012). Poly-lactic acid synthesis for application in biomedical devices - A review. Biotechnol. Adv., vol. 30, no. 1, pp. 321–328, doi: 10.1016/j.biotechadv.2011.06.019.
Mofokeng, J. P., & Luyt, A. S. (2015). Morphology and thermal degradation studies of melt-mixed poly(hydroxybutyrate-co-valerate) (PHBV)/poly(ε-caprolactone) (PCL) biodegradable polymer blend nanocomposites with TiO2 as filler. J. Mater. Sci., vol. 50, no. 10, pp. 3812–3824, doi: 10.1007/s10853-015-8950-z.
Zuo, Y., Gu, J., Yang, L., Qiao, Z., Tan, H., & Zhang, Y. (2014). Preparation and characterization of dry method esterified starch/polylactic acid composite materials. Int. J. Biol. Macromol., vol. 64, pp. 174–180, doi: 10.1016/j.ijbiomac.2013.11.026.
Breuer, R., et al. (2019). Development and processing of flame retardant cellulose acetate compounds for foaming applications. J. Appl. Polym. Sci., vol. 137, no. 28, pp. 1–14, doi: 10.1002/app.48863.
Gunawardene, O. H. P., et al. (2021). Compatibilization of starch/synthetic biodegradable polymer blends for packaging applications: A review. J. Compos. Sci., vol. 5, no. 11, pp. 1–33, doi: 10.3390/jcs5110300.
Kalambur, S., & Rizvi, S. S. H. (2006). An overview of starch-based plastic blends from reactive extrusion. J. Plast. Film Sheeting, vol. 22, no. 1, pp. 39–58, doi: 10.1177/8756087906062729.
Rahmayetty, Wardhono, E. Y., Alfirano, & Kanani, N. (2021). The effect of cellulose nanocrystaline blending to the mechanical properties of composite edible film (PLA/CNC). Adv. Biol. Sci. Res. Jt. Proc. 2nd 3rd Int. Conf. Food Secur. Innov. (ICFSI 2018-2019), vol. 9, pp. 100–107, doi: 10.2991/absr.k.210304.018.
Mukaffa, H., et al. (2021). Effect of alkali treatment of piper betle fiber on tensile properties as biocomposite based polylactic acid: Solvent cast-film method. Mater. Today Proc., vol. 48, no. March, pp. 1–5, 2021, doi: 10.1016/j.matpr.2021.02.218.
Nasution, R. S., Nasution, D. Y., Marpongahtun, Muis, Y., & Mahmud. (2013). Kajian sifat fisika matriks komposit polimer dari polipropilen-polipropilena-g-maleat anhidrida dengan alpha-selulosa dari berbagai serat tumbuhan menggunakan divinil benzena sebagai agen pengikat silang. J. Tek. Kim. UNIMED, vol. 05, no. 02, pp. 1–7.
Akil, H. M., Rasyid, M. F. A. & J. Sharif. (2012). Effect of compatibilizer on properties of polypropylene layered silicate nanocomposite. Procedia Chem., vol. 4, pp. 65–72, doi: 10.1016/j.proche.2012.06.010.
Park, H. M., Liang, X., Mohanty, A. K., Misra, M., & Drzal, L. T. (2004). Effect of compatibilizer on nanostructure of the biodegradable cellulose acetate/organoclay nanocomposites. Macromolecules, vol. 37, no. 24, pp. 9076–9082, doi: 10.1021/ma048958s.
Petersson, L., Oksman, K., & Mathew, A. P. (2006). Using maleic anhydride grafted poly(lactic acid) as a compatibilizer in poly(lactic acid)/layered-silicate nanocomposites,” J. Appl. Polym. Sci., vol. 102, no. 2, pp. 1852–1862, doi: 10.1002/app.24121.
Anggresani, H. D. N. (2021). Karakteristik fisikokimia edible film pati ubi jalar ungu (Ipomoea Batatas L. Poir) dengan penambahan ekstrak jahe merah (Zingiber officinale var. Rubrum) serta aplikasinya pada buah nanas potong [Thesis]. Malang: Universitas Muhammadiyah Malang.
Souhoka, F. A., & Latupeirissa, J. (2018). Sintesis dan karakterisasi selulosa asetat (CA). Indo. J. Chem. Res., vol. 5, no. 2, pp. 58–62.
Maharana, T., Pattanaik, S., Routaray, A. Nath, N., & Sutar, A. K. (2015). Synthesis and characterization of poly(lactic acid) based graft copolymers. React. Funct. Polym., vol. 93, pp. 47–67, doi: 10.1016/j.reactfunctpolym.2015.05.006.
Bátori, V. et al. (2018). Synthesis and characterization of Maleic Anhydridegrafted orange waste for potential use in biocomposites. BioResources, vol. 13, no. 3, pp. 4986–4997, doi: 10.15376/biores.13.3.4986-4997.
Castiqliana, Silvia, & Halimatuddahliana. (2016). Pengaruh penambahan maleat Anhidrida-Grafted-Polipropilena terhadap sifat kekuatan bentur dan penyerapan air komposit hibrid plastik bekas kemasan gelas berpengisi serbuk serat ampas tebu dan serbuk serat kaca. J. Tek. Kim. USU, vol. 5, no. 1, pp. 7–12, doi: 10.32734/jtk.v5i1.1518.
Muharrami, L. K. (2014). Analisa DSC terhadap sintesis plastik HDPE–Fly Ash. J. Ilm. Rekayasa, vol. 7, no. 1, pp. 37–42, doi: 10.1007/978-1-4419-0851-3_121.
Yang, Z., Li, X., Si, J., Cui, Z., & Peng, K. (2019). Morphological, Mechanical and Thermal Properties of Poly(lactic acid) (PLA)/Cellulose Nanofibrils (CNF) Composites Nanofiber for Tissue Engineering. J. Wuhan Univ. Technol. Mater. Sci. Ed., vol. 34, no. 1, pp. 207–215, doi: 10.1007/s11595-019-2037-7.
DOI: http://dx.doi.org/10.36055/tjst.v18i2.17306
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Teknika: Jurnal Sains dan Teknologi
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.