Effect of current, time, concentration of tin (II) chloride, and temperature on making tin powder using the electrodeposition

Riska Oktanova, Soesaptri Oediyani, Anistasia Milandia, Rudi Subagja

Abstract


The process of assembling electronic components into electronic equipment requires tin solder material. Tin solder in the form of paste is used to provide good contact between electronic components and PCB (Printed Circuit Board). To make tin solder paste, tin powder with a size of 15 to 50 microns is required. The development of efficient technology to produce tin powder with controlled characteristics from tin bar raw material is an important challenge to increase the added value of this commodity. This study was conducted to make tin metal powder from tin metal bars by electrodeposition using a chloride electrolyte solution containing tin ions. The experimental variables observed were the current density of the electrodeposition process (0,5-1,1 A/m²), the concentration of tin in the electrolyte solution (5-30g/l), and the temperature of the electrodeposition process (30-60°C). The experimental variables were observed for their effect on the size of the tin powder particles formed and the current efficiency of the tin powder formation process on the cathode surface. The results showed the highest current efficiency (75%) at a current of 0,5 A/m², a time of 15 minutes, and a temperature of 30°C. The tin powder had an irregular morphology, with a more uniform particle size at higher currents. SEM-EDS analysis showed a complex morphology with increasing temperature and deposition time. This process produced tin powder with a purity of up to 99%, the highest (99,4%) at a temperature of 50°C.

Keywords


Tin; Electrodeposition; Particle Size; Current Efficiency; SEM-EDS

Full Text:

PDF

References


B. M. Ilham and Fadhilah, "Pengaruh tegangan listrik dan konsentrasi larutan elektrolit pada proses pemurnian timah (Sn) berdasarkan metoda electrolytic refining di Unit Metalurgi PT. Timah Tbk," J. Bina Tambang, vol. 6, no. 2, pp. 198-207, 2021.

Industrial Technology Research Institute (ITRI), Tin Industry Review. London, UK: International Tin Association, 2014.

P. D. Zamroni Salim and P. D. Ernawati, Info Komoditi Rumput Laut. Jakarta, Indonesia: Badan Pengkajian dan Pengembangan Kebijakan Perdagangan, 2016.

I. P. I. Lucheva and D. A. Mandibura, "Characterization and analysis of PCBs in industrial environments," Environ. Sci. Pollut. Res., vol. 18, no. 5, pp. 789-798, 2011, doi: 10.1007/s11356-011-0522-4.

A. Wahyono, "Environmental and health impacts of lead in soldering materials," J. Environ. Sci. Health, Part A, vol. 51, no. 3, pp. 234-242, 2016, doi: 10.1080/10934529.2015.1109389.

S. W. C. Cheng, X. Li, and Y. Zhang, "Microstructure and mechanical properties of lead-free solder alloys," J. Mater. Sci.: Mater. Electron., vol. 31, no. 22, pp. 19989-20001, 2020, doi: 10.1007/s10854-020-04418-9.

R. H. Mulyani, Y. C. Tanjung, and D. H. Prajitno, "Pengaruh variasi arus dan waktu terhadap pembuatan serbuk timah putih (Sn)," J. Kartika Kim., vol. 2, no. 1, pp. 1-7, 2019, doi: 10.26874/jkk.v2i1.21.

A. Nassef and M. El-Hadek, "Microstructure and mechanical behavior of hot pressed Cu-Sn powder alloys," Adv. Mater. Sci. Eng., vol. 2016, Art. no. 9796169, 2016, doi: 10.1155/2016/9796169.

A. Abioye, H. Zuhailawati, and M. A. I. Azlan, "Effects of SiC additions on Sn-Sb-Cu bearing alloy," J. Mater. Res. Technol., vol. 9, no. 6, pp. 13196-13205, 2020, doi: 10.1016/j.jmrt.2020.08.102.

R. Ardhi, "Stainless steel 316 for electrodeposition," J. Electrochem. Sci. Technol., vol. 12, no. 2, pp. 145-152, 2021, doi: 10.33962/jecst.2021.009.

T. Kakesi, "Electrorefining in aqueous chloride media for tin recovery," J. Electrochem. Sci. Technol., vol. 8, no. 4, pp. 320-328, 2013, doi: 10.5229/JECST.2013.8.4.320.

S. Husein, E. T. Wahyuni, and M. Mudasir, "Synthesis of tin(II) oxide (SnO) nanoparticle," J. Kim. Pendidik. Kim., vol. 4, no. 3, pp. 145-152, 2019, doi: 10.20961/jkpk.v4i3.29898.

A. Basyir et al., "Pengaruh suhu ruang peleburan dan tekanan gas alir terhadap output serbuk timah," in Proc. Semin. Nas. Fis., vol. 9, pp. 21-28, 2020, doi: 10.21009/03.snf2020.01.fa.05.

S. Sopiah, "Analisis faktor-faktor yang mempengaruhi proses elektrolisis larutan CuSO4," M.S. thesis, Institut Teknologi Bandung, 2008. [Online]. Available: https://digilib.itb.ac.id/gdl/view/9280

A. Asroni et al., "Pengaruh temperatur elektrolit terhadap ketebalan dan kuat lekat baja karbon rendah," Turbo J. Progr. Stud. Tek. Mesin, vol. 10, no. 2, pp. 272-278, 2021, doi: 10.24127/trb.v10i2.1755.

H. Kazimierczak, Z. Świątek, and P. Ozga, "Influence of current density on tin-zinc-bismuth alloys," Electrochim. Acta, vol. 304, pp. 1-9, 2019, doi: 10.1016/j.electacta.2019.03.041.

M. Mallik et al., "Effect of current density on nucleation and growth of Sn-Cu solder," Cryst. Growth Des., vol. 14, no. 12, pp. 6542-6549, 2014, doi: 10.1021/cg501440a.

M. B. Febrian, Y. Setiadi, and T. H. A. Wibawa, "Optimization of electrodeposition parameters," Atom Indones., vol. 43, no. 1, pp. 27-33, 2017, doi: 10.17146/aij.2017.618.

G. Rimaszeki, T. Kulcsar, and T. Kekesi, "Investigation of tin electrorefining in HCl solutions," J. Appl. Electrochem., vol. 42, no. 8, pp. 573-584, 2012, doi: 10.1007/s10800-012-0433-1.

S. Bakkali et al., "Theoretical and experimental studies of tin electrodeposition," Surf. Interfaces, vol. 19, Art. no. 100480, 2020, doi: 10.1016/j.surfin.2020.100480.

A. Sharma, Y. J. Jang, and J. P. Jung, "Effect of current density on morphology of electroplated tin," Surf. Eng., vol. 31, no. 6, pp. 458-464, 2015, doi: 10.1179/1743294414Y.0000000427.

S. S. Abd El Rehim, S. M. Sayyah, and M. M. El-Deeb, "Electroplating of copper from acidic citrate baths," Mater. Chem. Phys., vol. 80, no. 3, pp. 696-703, 2003, doi: 10.1016/S0254-0584(03)00125-4.

U. Sahaym et al., "Microstructural analysis of layered Sn films," J. Mater. Sci., vol. 45, no. 9, pp. 2342-2350, 2010, doi: 10.1007/s10853-010-4208-y.

A. Mohammed and A. Abdullah, "Scanning electron microscopy (SEM): A review," in Proc. Int. Conf. Hydraul. Pneum., Băile Govora, Romania, 2018, pp. 77-85.

S. Fletcher et al., "Effect of temperature on electrochemical capacitors," J. Power Sources, vol. 195, no. 21, pp. 7484-7488, 2010, doi: 10.1016/j.jpowsour.2010.05.043.




DOI: http://dx.doi.org/10.62870/tjst.v21i1.32459

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Teknika: Jurnal Sains dan Teknologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

mega888 android

mega888 ios

mega888 login

mega

pussy888

mega888

mega888

mega888 apk

mega888 ios

mega888 android

mega888 game

mega888 download

mega888 free credit

mega888 free test id

mega888 original

918kiss

pussy888

ntc33

joker123

xe88

ace333

mega888

mega888 download

mega888 ios

mega888 original

mega888 online casino

mega888 games

mega888

mega888

pussy888

918kiss

xe88

joker123

ntc33

mega888

918kiss

pussy888

joker123

xe88

ntc33

mega888

mega888 game

mega888 apk

mega888 apk

mega888

mega888

mega888 malaysia

mega888

mega888

mega888

mega888

mega888

mega888

mega888

pussy888

mega888 game

kiss918

kiss918

BRI303

BRI303

BRI303

BRI303

BRI303

BRI303

BRI303

BRI303

BRI303