Balancing strength and porosity: A critical evaluation of cement substitution with metakaolin in porous concrete

Auliya Rahmadillah, Bimo Brata Adhitya, Fitria Putri Lintang Sari

Abstract


Rapid urbanization has led to increased impervious surfaces, exacerbating stormwater runoff and urban flooding. As a response, pervious concrete has emerged as an innovative solution in sustainable infrastructure due to its high porosity, enabling water infiltration and flood mitigation. This study evaluates the impact of varying percentages of metakaolin as a partial cement substitute on the mechanical properties, permeability, and porosity of pervious concrete. Metakaolin, as a reactive pozzolanic material, is expected to enhance mechanical strength while maintaining the concrete’s drainage function. Five mix variations with 10%, 12.5%, 15%, 17.5%, and 20% metakaolin as a partial cement substitute were tested at concrete ages of 7 and 28 days. The results show that the optimal composition was achieved with a 15% metakaolin substitution, yielding 13.17 MPa compressive strength, 3.87 MPa splitting tensile strength, 0.469 cm/s permeability, and 24.34% porosity at 28 days. The addition of metakaolin in moderate amounts improves density and structural strength, but higher proportions significantly reduce permeability. These findings highlight the importance of achieving a balance between mechanical performance and hydraulic function in metakaolin-based pervious concrete design.

Keywords


Pervious concrete; Metakaolin; Cement replacement; Mechanical properties; Permeability; Porosity

Full Text:

PDF

References


A. I. Mahendra, N. Rochmah, and H. Widhiarto, “Pengaruh Penggunaan Silica Fume Sebagai Bahan Tambah Pada Beton Alir,” Student Scientific Creativity Journal, 2023.

M. F. Rodzi, “Pembangunan Infrastruktur Dan Pemerataan Ekonomi Di Indonesia,” Jurnal Masyarakat dan Desa, 2023.

J. Jonathan and M. Pamadi, “The Effects of Poor Drainage System in Batam Road: A Case in Nagoya, Batam,” LEADER: Civil Engineering and Architecture Journal, vol. 1, no. 2, pp. 190–196, 2023.

E. Khankhaje, T. Kim, H. Jang, C.-S. Kim, J. Kim, and M. Rafieizonooz, “A review of utilization of industrial waste materials as cement replacement in pervious concrete: An alternative approach to sustainable pervious concrete production,” Heliyon, vol. 10, no. 3, p. e24900, 2024, doi: 10.1016/j.heliyon.2024.e24900.

M. Adresi, A. Yamani, M. Karimaei Tabarestani, and H. Rooholamini, “A comprehensive review on pervious concrete,” Constr. Build. Mater., vol. 407, p. 133308, 2023, doi: 10.1016/j.conbuildmat.2023.133308.

C. M. Yun, M. R. Rahman, K. K. Kuok, A. C. P. Sze, A. L. K. Seng, and M. K. Bin Bakri, “Pervious Concrete Properties and Its Applications,” in Waste Materials in Advanced Sustainable Concrete: Reuse, Recovery and Recycle, M. R. Rahman, C. Mei Yun, and M. K. Bin Bakri, Eds. Cham: Springer International Publishing, 2022, pp. 1–23, doi: 10.1007/978-3-030-98812-8_1.

Z. Lu, J. Lu, Z. Liu, Z. Sun, and D. Stephan, “Influence of water to cement ratio on the compatibility of polycarboxylate superplasticizer with Portland cement,” Constr. Build. Mater., vol. 341, p. 127846, 2022, doi: 10.1016/j.conbuildmat.2022.127846.

Y. W. Tyas, D. Nurtanto, and K. Krisnamurti, “Pengaruh Variasi Prosentase Superplasticizer terhadap Sifat Mekanik dan Porositas Beton Berpori,” Jurnal Media Teknik Sipil, vol. 18, no. 2, pp. 81–90, 2020.

M. Bansal et al., “Influence of pozzolanic addition on strength and microstructure of metakaolin-based concrete,” PLoS One, vol. 19, no. 3, p. e0299342, 2024, doi: 10.1371/journal.pone.0299342.

S. B. Singh and M. Murugan, “Effect of metakaolin on the properties of pervious concrete,” Constr. Build. Mater., vol. 346, p. 128390, 2022, doi: 10.1016/j.conbuildmat.2022.128390.

M. Belladona, R. I. Gunawan, F. W. Wardhani, and A. Surapati, “Eco-Drainage Combined with Infiltration Wells for Sustainable Flood Control,” Jurnal Teknik Sipil, 2024.

W.-J. Long, J. Liu, and C. He, “A Facile Approach to Disperse Metakaolin for Promoting Compressive Strength of Cement Composites,” SSRN Electronic Journal, 2023.

K. Weise, N. Ukrainczyk, and E. A. B. Koenders, “Pozzolanic Reactions of Metakaolin with Calcium Hydroxide: Review on Hydrate Phase Formations and Effect of Alkali Hydroxides, Carbonates and Sulfates,” Materials & Design, vol. 233, p. 112245, 2023, doi: 10.1016/j.matdes.2023.112245.

R. Kumar, R. K. H. Singh, and M. Patel, “Effect of metakaolin on mechanical characteristics of the mortar and concrete: A critical review,” Mater. Today Proc., vol. 93, pp. 512–518, 2023, doi: 10.1016/j.matpr.2023.07.159.

A. M. Mansour and M. I. Al Biajawi, “The effect of the addition of metakaolin on the fresh and hardened properties of blended cement products: A review,” Mater. Today Proc., vol. 93, pp. 512–518, 2023, doi: 10.1016/j.matpr.2023.07.159.

J. Cai et al., “Mix design methods for pervious concrete based on the mesostructure: Progress, existing problems and recommendation for future improvement,” Case Studies in Construction Materials, vol. 17, p. e01345, 2022, doi: 10.1016/j.cscm.2022.e01345.

Z. Liu, X. Qi, Z. Shui, and Y. Lv, “The preparation, property and hydration mechanism of ultra high performance concrete with metakaolin substitution for silica fume,” Journal of Building Engineering, vol. 84, p. 108577, 2024, doi: 10.1016/j.jobe.2024.108577.

A. M. Mohamed and B. A. Tayeh, “Metakaolin in Ultra-High-Performance Concrete: A Critical Review of its Effectiveness as a Green and Sustainable Admixture,” Case Studies in Construction Materials, vol. 20, p. e02783, 2024, doi: 10.1016/j.cscm.2023.e02783.

Q. Luo, X. Zhang, J. Yu, and G. Geng, “Influence of metakaolin content to the microstructure and strength in hardened LC3 paste,” CEMENT, vol. 18, p. 100119, 2025, doi: 10.1016/j.cement.2024.100119.

D. L. Pillay, O. B. Olalusi, M. W. Kiliswa, P. O. Awoyera, J. T. Kolawole, and A. J. Babafemi, “Engineering performance of metakaolin based concrete,” Clean Eng. Technol., vol. 8, p. 100480, 2022, doi: 10.1016/j.clet.2022.100480.

A. G. Alareqi, J. Gu, A.-W. Ibrahim, E. E. Nyakilla, A. Salah, and G. AL-khulaidi, “Enhancing the durability of oil and gas wells using metakaolin-modified cement: An investigation of compressive and shear bond strengths at 95 and 180 °C,” Constr. Build. Mater., vol. 416, p. 135111, 2025, doi: 10.1016/j.conbuildmat.2024.135111.

R. Bai, J. Zhang, C. Yan, S. Liu, X. Wang, and Z. Yang, “Calcium hydroxide content and hydration degree of cement in cementitious composites containing calcium silicate slag,” Chemosphere, vol. 280, p. 130918, 2021, doi: 10.1016/j.chemosphere.2021.130918.

C. Sánchez-Mendieta, J. J. Galán-Díaz, and I. Martinez-Lage, “Relationships between density, porosity, compressive strength and permeability in porous concretes: Optimization of properties through control of the water-cement ratio and aggregate type,” Journal of Building Engineering, vol. 97, p. 110858, 2024, doi: 10.1016/j.jobe.2024.110858.

A. H. Akkaya and İ. H. Çağatay, “Investigation of the density, porosity, and permeability properties of pervious concrete with different methods,” Constr. Build. Mater., vol. 294, p. 123539, 2021, doi: 10.1016/j.conbuildmat.2021.123539.

M. H. Ismail, M. A. M. Johari, K. S. Ariffin, R. P. Jaya, M. H. W. Ibrahim, and Y. Yugashini, “Performance of High Strength Concrete Containing Palm Oil Fuel Ash and Metakaolin as Cement Replacement Material,” Advances in Civil Engineering, vol. 2022, p. 9761033, 2022, doi: 10.1155/2022/9761033.

M. N. Al-Hashem et al., “Mechanical and Durability Evaluation of Metakaolin as Cement Replacement Material in Concrete,” Materials, vol. 15, no. 12, p. 4268, 2022, doi: 10.3390/ma15124268.

J. Huang, Y. Zhang, Y. Sun, J. Ren, Z. Zhao, and J. Zhang, “ ‘Evaluation of pore size distribution and permeability reduction behavior in pervious concrete,” Constr. Build. Mater., vol. 290, p. 123228, 2021, doi: 10.1016/j.conbuildmat.2021.123228.

R. Homayoonmehr, A. A. Ramezanianpour, and M. Mirdarsoltany, “Influence of metakaolin on fresh properties, mechanical properties and corrosion resistance of concrete and its sustainability issues: A review,” Journal of Building Engineering, vol. 44, p. 103011, 2021, doi: 10.1016/j.jobe.2021.103011.

Y. Luo et al., “Study on the efflorescence behavior of concrete by adding metakaolin,” Journal of Building Engineering, vol. 83, p. 108396, 2024, doi: 10.1016/j.jobe.2023.108396.

X. Liu, P. Feng, Y. Cai, X. Yu, C. Yu, and Q. Ran, “Carbonation behavior of calcium silicate hydrate (C-S-H): Its potential for CO2 capture,” Chemical Engineering Journal, vol. 431, p. 134243, 2022, doi: 10.1016/j.cej.2021.134243.

V. Subash Koneru, S. Nitin Chowdary Kolli, V. Gopal Vemuri, K. Gurram, V. G. Ghorpade, and S. Rao Hanchate, “Development of optimum sustainable metakaolin replaced cement concrete based on homogeneity, compressive strength and rapid chloride ion penetration,” Mater. Today Proc., vol. 80, pp. 1306–1310, 2023, doi: 10.1016/j.matpr.2023.01.061.




DOI: http://dx.doi.org/10.62870/tjst.v21i1.32646

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Teknika: Jurnal Sains dan Teknologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

mega888 android

mega888 ios

mega888 login

mega

pussy888

mega888

mega888

mega888 apk

mega888 ios

mega888 android

mega888 game

mega888 download

mega888 free credit

mega888 free test id

mega888 original

918kiss

pussy888

ntc33

joker123

xe88

ace333

mega888

mega888 download

mega888 ios

mega888 original

mega888 online casino

mega888 games

mega888

mega888

pussy888

918kiss

xe88

joker123

ntc33

mega888

918kiss

pussy888

joker123

xe88

ntc33

mega888

mega888 game

mega888 apk

mega888 apk

mega888

mega888

mega888 malaysia

mega888

mega888

mega888

mega888

mega888

mega888

mega888

pussy888

mega888 game

kiss918

kiss918

BRI303

BRI303

BRI303

BRI303

BRI303

BRI303

BRI303

BRI303

BRI303