Design and simulation of microstrip phased array antenna for 2.0–2.8 GHz

Kurnia Wati Pascitra Handayani, Sopian Soim, Nurhajar Anugraha

Abstract


This study aims to create and test a microstrip array antenna with eight elements that works in the 2.0–2.8 GHz frequency range. We use CST Studio Suite to run simulations that check performance metrics like return loss (S11), VSWR, gain, and radiation pattern. The results show that the antenna has a return loss of -24 dB and a VSWR of 1.13 at a frequency of 2.4 GHz, which means the impedance is very well matched. However, the radiation and total efficiencies at 2 GHz and 2.8 GHz are still low, so the design can't handle the highest frequencies in the working range. The 126 MHz bandwidth should be able to cover channels 1 to 13 in Band 40 (2300–2400 MHz), but the antenna needs to work better at frequencies above 2.4 GHz to be helpful for all applications. Compared to other studies, this antenna's gain and efficiency are still not as good as those of other phased array antennas. This study is the first step towards creating a possible digital beam steering system that adaptively aligns signals to user movement to reduce interference in mobile environments.

Keywords


Phased array antenna; Microstrip; 4G LTE; Wireless communication

Full Text:

PDF

References


P. Zhang, J. Chen, X. Yang, N. Ma, and Z. Zhang, “Recent research on massive MIMO propagation channels: A survey,” IEEE Commun. Mag., vol. 56, no. 12, pp. 22–29, Dec. 2019, doi: 10.1109/MCOM.2018.1800138.

I. Ahmed et al., “A survey on hybrid beamforming techniques in 4G: Architecture and system model perspectives,” IEEE Commun. Surveys Tuts., vol. 21, no. 4, pp. 3060–3097, 2019, doi: 10.1109/COMST.2019.2917144.

A. F. Molisch et al., “Hybrid beamforming for massive MIMO: A survey,” IEEE Commun. Mag., vol. 55, no. 9, pp. 134–141, Sep. 2019, doi: 10.1109/MCOM.2017.1600400.

S. Han, C.-L. I, Z. Xu, and C. Rowell, “Large-scale antenna systems with hybrid analog and digital beamforming for millimeter-wave 5G,” IEEE Commun. Mag., vol. 53, no. 1, pp. 186–194, Jan. 2015, doi: 10.1109/MCOM.2015.7010533.

R. Chataut and R. Akl, “Massive MIMO systems for 5G and beyond: Overview, recent trends, challenges, and future research directions,” Sensors, vol. 20, no. 10, p. 2753, 2020, doi: 10.3390/s20102753.

F. Jalili et al., “Linearization trade-offs in a 5G mmWave active phased array OTA setup,” IEEE Access, vol. 8, pp. 110669–110677, 2020, doi: 10.1109/ACCESS.2020.3002139.

K. Kouassi, G. Andrieux, and J. F. Diouris, “PAPR distribution for single-carrier M-QAM modulations,” Wireless Pers. Commun., vol. 104, no. 2, pp. 727–738, 2019, doi: 10.1007/s11277-018-6047-6.

S. Mazahir and S. A. Sheikh, “On companding schemes for PAPR reduction in OFDM systems employing higher order QAM,” IEEE Trans. Broadcast., vol. 62, no. 3, pp. 716–726, Sep. 2016, doi: 10.1109/TBC.2016.2570023.

A. L. Swindlehurst et al., “Millimeter-wave massive MIMO: The next wireless revolution?,” IEEE Commun. Mag., vol. 52, no. 9, pp. 56–62, Sep. 2014, doi: 10.1109/MCOM.2014.6894453.

N. Gupta and P. Srinivasu, “Design and analysis of dual, quad, and octal element microstrip patch antenna arrays for sub-6 GHz applications,” J. Commun. Technol. Electron., vol. 65, no. 5, pp. 495–502, 2020, doi: 10.1134/S106422692005005X.

A. B. Abdel-Rahman et al., “Eight-element slot-loop antenna array on FR-4 for millimeter-wave applications,” IEEE Trans. Antennas Propag., vol. 68, no. 4, pp. 2925–2932, Apr. 2020, doi: 10.1109/TAP.2020.2970049.

M. Jokinen, M. Sonkki, and E. Salonen, “Phased antenna array implementation with USRP,” in Proc. 11th Eur. Conf. Antennas Propag. (EuCAP), Paris, France, Mar. 2017, pp. 2827–2831, doi: 10.23919/EuCAP.2017.7928983.

S.-W. Oh, W.-H. Lim, and H. L. Lee, “Multibeam-based mmWave segmented beamforming array system for high-efficiency and secure communication,” Eng. Sci. Technol. Int. J., vol. 52, p. 101676, 2024, doi: 10.1016/j.jestch.2023.101676.

J. Kim and H. L. Lee, “High-gain planar segmented antenna for mmWave phased array applications,” IEEE Trans. Antennas Propag., vol. 70, no. 7, pp. 5918–5922, Jul. 2022, doi: 10.1109/TAP.2022.3161523.

X. Gao, L. Dai, and A. M. Sayeed, “Low RF-complexity technologies for millimeter-wave MIMO with large antenna arrays in 5G,” IEEE Commun. Mag., vol. 56, no. 4, pp. 211–217, Apr. 2021, doi: 10.1109/MCOM.001.2000640.

S. Lee, J. Kim, and H. Park, “Design of 8-element microstrip phased array antenna for 5G mid-band applications,” IEEE Access, vol. 9, pp. 76543–76551, 2021, doi: 10.1109/ACCESS.2021.3084852.

Y. Chen, Z. Zhang, and J. Zhang, “A low-profile 8-element phased array antenna with enhanced beam scanning for sub-6 GHz 5G applications,” Int. J. Antennas Propag., vol. 2020, Art. ID 8871082, 2020, doi: 10.1155/2020/8871082.

H. Park, D. Lee, and S. Kim, “Compact 8-element linear phased array on FR-4 substrate for LTE applications,” Prog. Electromagn. Res. C, vol. 93, pp. 1–12, 2019, doi: 10.2528/PIERC19010101.

X. Wang, Y. Li, and Z. Zhang, “Design of an 8-element phased array with low side lobes for sub-6 GHz applications,” IEEE Access, vol. 9, pp. 115432–115440, 2021, doi: 10.1109/ACCESS.2021.3106731.

H. Liu, X. Chen, and J. Li, “Phase-only beamforming design for compact phased array antennas in sub-6 GHz,” Int. J. Antennas Propag., vol. 2020, Art. ID 8362942, 2020, doi: 10.1155/2020/8362942.

Y. Zhao, Y. Zhang, and S. Xu, “A novel feeding network for improving impedance matching in 8-element phased array antennas at 2.6–2.8 GHz,” Prog. Electromagn. Res. C, vol. 92, pp. 123–132, 2019, doi: 10.2528/PIERC19062504.

D. M. John et al., “A dual-band flexible MIMO array antenna for Sub-6 GHz 5G communications,” Sensors, vol. 25, no. 11, p. 3557, 2025, doi: 10.3390/s25113557.

S. I. Siddiqui, S. Bashir, A. Khan, S. Ghafoor, and I. Aziz, “A dual-band high-gain beam steering antenna array for 5G sub-6 GHz base station,” Sci. Rep., vol. 14, p. 26517, 2024, doi: 10.1038/s41598-024-77009-2.

C. L. Chan, H. T. Wong, C. H. Lam, and Q. X. Chu, “Phased array antenna calibration based on autocorrelation algorithm,” Sensors, vol. 24, no. 23, p. 7496, 2024, doi: 10.3390/s24237496.

N. N. O. Parchin and H. Jahanbakhsh, “Practical analysis of pattern-reconfigurable MIMO antenna for 5G sub-6 GHz applications,” Sensors, vol. 19, no. 1, p. 141, 2019, doi: 10.3390/s19010141.

G. K. Sooni et al., “Design of a compact multistubs resonator-based dual-band flexible wearable antenna for sub-6 GHz ISM applications,” Sci. Rep., vol. 15, p. 24013, 2025, doi: 10.1038/s41598-025-73517-8.

D. Bohme, P. Schellenberger, and T. F. Eibert, “Accurate radiation pattern prediction of phased array antennas using Hadamard-based excitations,” Prog. Electromagn. Res. B, vol. 96, pp. 45–58, 2024, doi: 10.2528/PIERB24012502.

A. M. H. Wong, B. H. K. Fong, and G. V. Eleftheriades, “Experimental demonstration of peripherally-excited antenna arrays generating steerable pencil beams,” Nat. Commun., vol. 12, p. 4654, 2021, doi: 10.1038/s41467-021-24947-0.

M. Monemi, M. Rasti, and M. Latva-aho, “Revisiting Fraunhofer and Fresnel boundaries for phased array antennas,” arXiv preprint, arXiv:2411.02417, 2024.

J. C. Hanson, “Broadband RF phased array design with MEEP: Comparisons to array theory in two and three dimensions,” arXiv preprint, arXiv:2102.04585, 2021.




DOI: http://dx.doi.org/10.62870/tjst.v21i1.33816

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Teknika: Jurnal Sains dan Teknologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

mega888 android

mega888 ios

mega888 login

mega

pussy888

mega888

mega888

mega888 apk

mega888 ios

mega888 android

mega888 game

mega888 download

mega888 free credit

mega888 free test id

mega888 original

918kiss

pussy888

ntc33

joker123

xe88

ace333

mega888

mega888 download

mega888 ios

mega888 original

mega888 online casino

mega888 games

mega888

mega888

pussy888

918kiss

xe88

joker123

ntc33

mega888

918kiss

pussy888

joker123

xe88

ntc33

mega888

mega888 game

mega888 apk

mega888 apk

mega888

mega888

mega888 malaysia

mega888

mega888

mega888

mega888

mega888

mega888

mega888

pussy888

mega888 game

kiss918

kiss918

BRI303

BRI303

BRI303

BRI303

BRI303

BRI303

BRI303

BRI303

BRI303