Pengaruh konstruksi kerapatan benang kain tenun kapas 100% (kain kanvas) terhadap konstanta dielektrik dan profil tegangan pengisian & pengosongan pada perangkat kapasitor plat sejajar
Abstract
Pada dasarnya kain tenun terdiri atas struktur anyaman benang-benang yang terbuat dari bahan serat tekstil melalui suatu proses pertenunan. Salah satu jenis serat yang telah lama dikenal sebagai bahan baku pembuatan kain tenun adalah serat kapas. Terdapat tujuh jenis konstruksi kerapatan benang kain tenun kapas 100% yang telah digunakan sebagai material dielektrik pada penelitian ini. Pada penelitian ini telah dilakukan pengamatan mengenai pengaruh konstruksi kerapatan benang kain tenun kapas 100% (kain kanvas) terhadap konstanta dielektrik dan profil tegangan pengisian & pengosongan pada perangkat kapasitor plat sejajar. Pengamatan konstanta dielektrik dan perilaku tegangan perangkat kapasitor plat sejajar berdielektrik kain tenun kapas 100% saat proses pengisian & pengosongan telah dilakukan dengan menggunakan perangkat mikrokontroler Arduino Uno. Proses pengisian & pengosongan kapasitor telah dilakukan dengan menggunakan skema rangkaian seri resistor-kapasitor (RC). Hasil pengamatan menunjukkan kesesuaian cukup baik antara hasil prediksi dan eksperimen pada perilaku profil tegangan kapasitor plat sejajar berdielektrik kain tenun kapas 100% saat proses pengisian & pengosongan dengan nilai R2 > 0,9. Telah ditemukan hubungan antara parameter kerapatan benang kain tenun kapas 100% terhadap konstanta dielektrik dan profil tegangan pengisian & pengosongan perangkat kapasitor plat sejajar. Hasil menunjukan bahwa semakin besar nilai kerapatan benang kain tenun kapas 100%, maka semakin besar nilai konstanta dielektrik kain tersebut.
Woven fabric consists of interlacing threads made from fiber material by weaving process. One type of fibers which is known as raw material for making woven fabric is cotton fiber. In this research, there are seven types of yarn-fabric density of 100% cotton fabric that has been used as dielectric materials. In this study, the influence of woven dielectric yarn density on the dielectric properties and the voltage charging & discharging profiles of the parallel plate capacitor devices has been carried out. The observation of the dielectric properties and the voltage in the parallel plate capacitor devices during the charging and discharging process are carried out using an Arduino Uno microcontroller device. The charging and discharging profiles are measured by using a series of resistor-capacitor (RC) circuit. The results of the charging process and the discharging process obtained R2 > 0.9, which indicates that the correlation between the predicted and experimental results has a very good relationship. It has been found that the correlation between the woven dielectric yarn density on the dielectric constant and the charge-discharge profiles of the parallel plate capacitor. It also has been found that the higher density of the 100% cotton fabric, the higher the dielectric constant value of the fabric.
Keywords
Full Text:
PDF (Indonesian)References
Mustata, F. S. C., & Mustata, A. (2014). Dielectric behaviour of some woven fabrics on the basis of natural cellulosic fibers. Advances in Materials Science and Engineering, vol. 2014. doi: 10.1155/2014/216548.
Lv, H. M., & Ma, C. Q. (2013). Experimental study on the dielectric spectrum of cotton fiber aggregation. Advanced Materials Research, vol. 821, pp. 1475-1478. doi: 10.4028/www.scientific.net/AMR.821-822.1475.
Bal, K., & Kothari, V. K. (2014). Dielectric behaviour of polyamide monofilament fibers containing moisture as measured in woven form. Fibers and Polymers, vol. 15, no. 8, pp. 1745-1751. doi: 10.1007/s12221-014-1745-z.
Liu, Y., & Zhao, X. (2016). Experimental studies on the dielectric behaviour of polyester woven fabrics. Fibres & Textiles in Eastern Europe, vol. 24, no. 3(117), pp. 67-71. doi: 10.5604/12303666.1196614.
Cerovic, D. D., Asanovic, K. A., Maletic, S. B., & Dojcilovic, J. R. (2013). Comparative study of the electrical and structural properties of woven fabrics. Composites Part B: Engineering, vol. 49, pp. 65-70. doi: 10.1016/j.compositesb.2013.01.002.
Gniotek, K., & Krucinska, I. (2004). The basic problems of textronics. Fibres and Textiles in Eastern Europe., vol. 12, no. 1, pp. 13-16.
Salvado, R., Loss, C., Gonçalves, R., & Pinho, P. (2012). Textile materials for the design of wearable antennas: A survey. Sensors, vol. 12, no. 11,
-15857. doi: 10.3390/s121115841.
Jean-Charles, Y. T., Ungvichian, V., & Barbosa, J. A. (2009). Effects of substrate permittivity on planar inverted-f antenna performances. J. Comput, vol. 4, no. 7, pp. 610-614. doi: 10.4304/jcp.4.7.610-614.
Lesnikowski, J. (2012). Dielectric permittivity measurement methods of textile substrate of textile transmission lines. Przeglad Elektrotechniczny, vol. 88, no. 3A, pp. 148-151.
Sankaralingam, S., & Gupta, B. (2010). Determination of dielectric constant of fabric materials and their use as substrates for design and development of antennas for wearable applications. IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 12, pp. 3122-3130. doi: 10.1109/TIM.2010.2063090.
Liu, Y. J., & Zhao, X. M. (2015). The research on the dielectric constant of polyester knitted fabrics. Advanced Materials Research, vol.1089, pp. 42-45. doi: 10.4028/www.scientific.net/AMR.1089.42.
Bal, K., & Kothari, V. K. (2009). Measurement of dielectric properties of textile materials and their applications. Indian Journal of Fibre and Textile Research, vol. 34, no. 2, pp. 191-199.
Cerovic, D. D., Dojcilovic, J. R., Asanovic, K. A., & Mihajlidi, T. A. (2009). Dielectric investigation of some woven fabrics. Journal of Applied Physics, vol. 106, no. 8. doi: 10.1063/1.3236511.
Bal, K., & Kothari, V. K. (2010). Permittivity of woven fabrics: A comparison of dielectric formulas for air-fiber mixture. IEEE Transactions on Dielectrics and Electrical Insulation, vol. 17, no. 3, pp. 881-889. doi: 10.1109/TDEI.2010.5492262.
Allagui, A., Elwakil, A. S., Fouda, M. E., & Radwan, A. G. (2018). Capacitive behavior and stored energy in supercapacitors at power line frequencies. Journal of Power Sources, vol. 390, no. 142–147. doi: 10.1016/j.jpowsour.2018.04.035.
Halliday, D., Resnick, R., Walker. (1997). Fundamentals of Physics-Extended, 5th. New York: John Wiley & Sons.
Du, W. Y. (2014). Resistive, Capacitive, Inductive, and Magnetic Sensor Technologies. Boca Raton: CRC Press.
Putra, V. G. V., Wijayono, A., Purnomosari, E., Ngadiono, N., & Irwan, I. (2019). Metode pengukuran kapasitansi dengan menggunakan mikrokontroler arduino uno. JIPFRI (Jurnal Inovasi Pendidikan Fisika Dan Riset Ilmiah), vol. 3, no. (1), pp. 36-45. doi: 10.30599/jipfri.v3i1.425.
Putra, V. G. V., & Purnomosari, E. (2016). Pengantar Listrik Magnet dan Terapannya. ISBN 978-6020-72713-2-6. Yogyakarta: CV. Mulia Jaya.
Knott, E. F. (1993). Dielectric constant of plastic foams. IEEE Transactions on Antennas and Propagation, vol. 41, no. 8, pp. 1167-1171. doi: 10.1109/8.244664.
DOI: http://dx.doi.org/10.36055/tjst.v16i2.8198
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Teknika: Jurnal Sains dan Teknologi
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.