Pengaruh konstruksi kerapatan benang kain tenun kapas 100% (kain kanvas) terhadap konstanta dielektrik dan profil tegangan pengisian & pengosongan pada perangkat kapasitor plat sejajar

Andrian Wijayono, Valentinus Galih Vidia Putra

Abstract


Pada dasarnya kain tenun terdiri atas struktur anyaman benang-benang yang terbuat dari bahan serat tekstil melalui  suatu  proses  pertenunan.  Salah  satu  jenis  serat  yang  telah  lama  dikenal  sebagai  bahan  baku pembuatan kain tenun adalah serat kapas. Terdapat tujuh jenis konstruksi kerapatan benang kain tenun kapas 100% yang telah digunakan sebagai material dielektrik pada penelitian ini. Pada penelitian ini telah dilakukan pengamatan mengenai pengaruh konstruksi kerapatan  benang  kain tenun kapas 100% (kain kanvas)  terhadap  konstanta  dielektrik  dan  profil  tegangan  pengisian  &  pengosongan  pada  perangkat kapasitor plat sejajar. Pengamatan konstanta dielektrik dan perilaku tegangan perangkat kapasitor plat sejajar berdielektrik kain tenun kapas 100% saat proses pengisian & pengosongan telah dilakukan dengan menggunakan perangkat mikrokontroler Arduino Uno. Proses pengisian & pengosongan kapasitor telah dilakukan  dengan  menggunakan  skema  rangkaian  seri  resistor-kapasitor  (RC).  Hasil  pengamatan menunjukkan kesesuaian cukup baik antara hasil prediksi dan eksperimen pada perilaku profil tegangan kapasitor plat sejajar berdielektrik kain tenun kapas 100% saat proses pengisian & pengosongan dengan nilai R2 > 0,9. Telah ditemukan hubungan antara parameter kerapatan benang kain tenun kapas 100% terhadap  konstanta  dielektrik  dan  profil  tegangan  pengisian  &  pengosongan  perangkat  kapasitor  plat sejajar. Hasil menunjukan bahwa semakin besar nilai kerapatan benang kain tenun kapas 100%, maka semakin besar nilai konstanta dielektrik kain tersebut. 

 

Woven fabric consists of interlacing threads made from fiber material by weaving process. One type of fibers which is known as raw material for making woven fabric is cotton fiber. In this research, there are seven types of yarn-fabric density of 100% cotton fabric that has been used as dielectric materials. In this  study,  the  influence  of  woven  dielectric  yarn  density  on  the  dielectric  properties  and  the  voltage charging  &  discharging  profiles  of  the  parallel  plate  capacitor  devices  has  been  carried  out.  The observation of the dielectric properties and the voltage in the parallel plate capacitor devices during the charging  and  discharging  process  are  carried  out  using  an  Arduino  Uno  microcontroller  device.  The charging and discharging profiles are measured by using a series of resistor-capacitor (RC) circuit. The results of the charging process and the discharging process obtained R2 > 0.9, which indicates that the correlation  between  the  predicted  and  experimental  results  has  a  very  good  relationship.  It  has  been found that the correlation between the woven dielectric yarn density on the dielectric constant and the charge-discharge profiles of the parallel plate capacitor. It also has been found that the higher density of the 100% cotton fabric, the higher the dielectric constant value of the fabric.


Keywords


Kerapatan benang; kain tenun kapas; konstanta dielektrik; profil tegangan; pengisian; pengosongan; kapasitor plat sejajar

Full Text:

PDF (Indonesian)

References


Mustata, F. S. C., & Mustata, A. (2014). Dielectric behaviour of some woven fabrics on the basis of natural cellulosic fibers. Advances in Materials Science and Engineering, vol. 2014. doi: 10.1155/2014/216548.

Lv, H. M., & Ma, C. Q. (2013). Experimental study on the dielectric spectrum of cotton fiber aggregation. Advanced Materials Research, vol. 821, pp. 1475-1478. doi: 10.4028/www.scientific.net/AMR.821-822.1475.

Bal, K., & Kothari, V. K. (2014). Dielectric behaviour of polyamide monofilament fibers containing moisture as measured in woven form. Fibers and Polymers, vol. 15, no. 8, pp. 1745-1751. doi: 10.1007/s12221-014-1745-z.

Liu, Y., & Zhao, X. (2016). Experimental studies on the dielectric behaviour of polyester woven fabrics. Fibres & Textiles in Eastern Europe, vol. 24, no. 3(117), pp. 67-71. doi: 10.5604/12303666.1196614.

Cerovic, D. D., Asanovic, K. A., Maletic, S. B., & Dojcilovic, J. R. (2013). Comparative study of the electrical and structural properties of woven fabrics. Composites Part B: Engineering, vol. 49, pp. 65-70. doi: 10.1016/j.compositesb.2013.01.002.

Gniotek, K., & Krucinska, I. (2004). The basic problems of textronics. Fibres and Textiles in Eastern Europe., vol. 12, no. 1, pp. 13-16.

Salvado, R., Loss, C., Gonçalves, R., & Pinho, P. (2012). Textile materials for the design of wearable antennas: A survey. Sensors, vol. 12, no. 11,

-15857. doi: 10.3390/s121115841.

Jean-Charles, Y. T., Ungvichian, V., & Barbosa, J. A. (2009). Effects of substrate permittivity on planar inverted-f antenna performances. J. Comput, vol. 4, no. 7, pp. 610-614. doi: 10.4304/jcp.4.7.610-614.

Lesnikowski, J. (2012). Dielectric permittivity measurement methods of textile substrate of textile transmission lines. Przeglad Elektrotechniczny, vol. 88, no. 3A, pp. 148-151.

Sankaralingam, S., & Gupta, B. (2010). Determination of dielectric constant of fabric materials and their use as substrates for design and development of antennas for wearable applications. IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 12, pp. 3122-3130. doi: 10.1109/TIM.2010.2063090.

Liu, Y. J., & Zhao, X. M. (2015). The research on the dielectric constant of polyester knitted fabrics. Advanced Materials Research, vol.1089, pp. 42-45. doi: 10.4028/www.scientific.net/AMR.1089.42.

Bal, K., & Kothari, V. K. (2009). Measurement of dielectric properties of textile materials and their applications. Indian Journal of Fibre and Textile Research, vol. 34, no. 2, pp. 191-199.

Cerovic, D. D., Dojcilovic, J. R., Asanovic, K. A., & Mihajlidi, T. A. (2009). Dielectric investigation of some woven fabrics. Journal of Applied Physics, vol. 106, no. 8. doi: 10.1063/1.3236511.

Bal, K., & Kothari, V. K. (2010). Permittivity of woven fabrics: A comparison of dielectric formulas for air-fiber mixture. IEEE Transactions on Dielectrics and Electrical Insulation, vol. 17, no. 3, pp. 881-889. doi: 10.1109/TDEI.2010.5492262.

Allagui, A., Elwakil, A. S., Fouda, M. E., & Radwan, A. G. (2018). Capacitive behavior and stored energy in supercapacitors at power line frequencies. Journal of Power Sources, vol. 390, no. 142–147. doi: 10.1016/j.jpowsour.2018.04.035.

Halliday, D., Resnick, R., Walker. (1997). Fundamentals of Physics-Extended, 5th. New York: John Wiley & Sons.

Du, W. Y. (2014). Resistive, Capacitive, Inductive, and Magnetic Sensor Technologies. Boca Raton: CRC Press.

Putra, V. G. V., Wijayono, A., Purnomosari, E., Ngadiono, N., & Irwan, I. (2019). Metode pengukuran kapasitansi dengan menggunakan mikrokontroler arduino uno. JIPFRI (Jurnal Inovasi Pendidikan Fisika Dan Riset Ilmiah), vol. 3, no. (1), pp. 36-45. doi: 10.30599/jipfri.v3i1.425.

Putra, V. G. V., & Purnomosari, E. (2016). Pengantar Listrik Magnet dan Terapannya. ISBN 978-6020-72713-2-6. Yogyakarta: CV. Mulia Jaya.

Knott, E. F. (1993). Dielectric constant of plastic foams. IEEE Transactions on Antennas and Propagation, vol. 41, no. 8, pp. 1167-1171. doi: 10.1109/8.244664.




DOI: http://dx.doi.org/10.36055/tjst.v16i2.8198

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Teknika: Jurnal Sains dan Teknologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.