Pembuatan dan pengujian sifat fisis dan sifat mekanik keramik alumina sebagai komponen mekanik

Mohamad Nasrun, Sujianto Sujianto

Abstract


Keramik alumina merupakan salah satu material yang sangat penting dan strategis untuk beragam aplikasi seperti pada komponen otomotif, komponen elektronik dan komponen mekanik, bahan gerinding/abrasive dan sebagai bahan untuk pembuatan kiln furniture. Pada penelitian ini dilakukan proses sintering keramik alumina dengan menggunakan bahan aditif SiO. Pembuatan keramik alumina dilakukan melalui proses metalurgi serbuk, yaitu digunakan bahan baku serbuk gamma alumina dan sebagai bahan aditif sintering digunakan silika dari gelas kaca (SiO22 glass). Variabel penelitian yang digunakan ada dua macam, yaitu persentase penambahan aditif silika dengan variasi berat 1%, 5%, 7.5% dan 10% dan variasi suhu sintering 1100oC, 1200oC, 1300oC dan 1400oC. Sampel yang telah disintering selanjutnya dilakukan pengujian, antara lain uji densitas dan porositas, uji kuat tekan dan analisis XRD. Penambahan aditif dan variasi suhu sintering dapat memberikan pengaruh yang signifikan terhadap nilai densitas, porositas dan kuat tekan. Kondisi yang terbaik dari penelitian ini diperoleh pada sampel dengan aditif 10% SiO2 dan suhu sintering 1400oC. Pada kondisi ini dicapai nilai maksimum densitas 2.59 g/cm3, porositas minimal 10% dan kuat tekan tertinggi dicapai sebesar 234.60 MPa. Berdasarkan hasil analisis XRD terbentuk fasa dominan corundum (α-Al2O) dan fasa minor tydimit SiO, serta tidak terjadi reaksi antara alumina dengan aditif silika.

 

Alumina ceramic is one of the most important and strategic materials for various applications such as automotive components, electronic components and mechanical components, grinding / abrasive materials, and as a material for making kiln furniture. In this study, the sintering process of alumina ceramics was carried out using SiO additives. The manufacture of alumina ceramics is carried out through a powder metallurgy process, which is used as raw material for gamma-alumina powder and as an additive for sintering used silica from glass (SiO2 glass). As a research variable, two types were used, namely the percentage addition of silica additives, namely with variations of 1%, 5%, 7.5%, and 10% by weight and variations in sintering temperature of 11002oC, 1200oC, 1300oC, and 1400C. The samples that have been sintered are then tested, including density and porosity test, mechanical strength test (compressive strength), and XRD analysis. The addition of additives and variations in sintering temperature can have a significant effect on the values of density, porosity, and compressive strength. The best conditions from this study were obtained in samples with 10% SiO additive and sintering temperature of 1400oC. In this condition the maximum density value is 2.59 g/cm2, the minimum porosity is 10% and the highest compressive strength is 234.60 MPa. Based on the results of XRD analysis, a dominant phase of corundum (α-Al2O3) and a minor phase of tydimite SiOwas formed, and there was no reaction between alumina and silica additive.


Keywords


Alumina; corundum; sintering; komponen mekanik; isolator listrik; penghantar panas;

Full Text:

PDF (Indonesian)

References


Mawardani, P. (2014). Pengaruh Kemurnian Bahan Baku Alumina Terhadap Temperatur Sintering dan Karakterisasi Keramik Alumina [thesis]. Jakarta: UIN Syarif Hidayatullah.

Grigoriev, M. V., & Kulkov, S. N. (2016). Structures and properties of alumina-based ceramic for reconstructive oncology. AIP Conference Proceedings, vol. 1760, no. 1. doi: 10.1063/1.4960241.

Fujiwara, S., Tamura, Y., Maki, H., Azima, N., & Takeuchi, Y. (2007). Development of new high-purity alumina. Sumitomo Kagaku, vol. I

Ramlan, R., Ginting, M., Muljadi, M., & Sebayang, P. (2007). Pembuatan keramik beta alumina (Na2O – AlO) dengan aditif MgO dan kerakterisasi sifat fisis serta struktur kristalnya. Jurnal Fisika Himpunan Fisika Indonesia, vol. 7, no. 1, pp. 10-15.

Boch, P., & Niepce, J. P. (2007). Ceramic Materials Processes, Properties and Applications. USA: ISTE.

Istiqomah, D. S., Kirom, M. R., Abrar, & Syarif, D. G. (2016). Sintesis Al2O nanopartikel dari bahan bijih bauksit untuk aplikasi pada model radiator. E-Proceeding of Engineering, vol. 3, no. 2, pp. 2108-2115.

Nuruzzaman, D. M., Kamaruzaman, F. F., & Azmi, N, M. (2016). Effect of sintering temperature on the properties of aluminium-aluminium oxide composite materials. International Journal of Engineering Materials and Manufacture, vol. 1, no. 2, pp. 59-64.

Guo, D., & Liu, S. (2016). Effect of nanopowder addition on the flexural strength of alumina ceramic: a Weibull model analysis. Ceramics-Silikáty, vol. 60, no. 2, pp. 99-104.

Raharjo, J., Rahayu, S., & Mustika, T. (2015). Pengaruh tingkat kemurnian bahan baku alumina terhadap temperatur sintering dan karakteristik keramik alumina. Prosiding Seminar Nasional Teknik Kimia “Kejuangan”: Pengembangan Teknologi Kimia untuk Pengolahan Sumber Daya Alam Indonesia Yogyakarta, pp. B14:1-7. ISSN: 1593-4393.

Thomazin, D., Gelfuso, M. V., Chinelatto, A. S. A., Chinelatto, A. L., Sanson, F. K., & Neto, F. T. (2011). Alumina ceramics obtained by chemical synthesis using conventional and microwave sintering. Cerâmica, vol. 57, no. 341, pp. 45-49.

Pawar, P., Ballav, R., & Kumar, A. (2015). An overview of machining process of alumina and alumina ceramic composites. Manufacturing Science and Technology, vol. 3, no. 1, pp. 10-15.

Kesharaju, M., & Nagarajah, R. (2014). Determination of density variation and microstructure in reaction‐sintered SiC ceramics using ultrasonic time‐of‐flight. Applied Ceramic Technology, vol. 11, no. 2, pp. 303-310.

Sijabat, K. 2008. Pembuatan Keramik Paduan Cordierit-Alumina Sebagai Bahan Refraktori dan Karakterisasinya [master thesis]. Medan: University of Sumatera Utara Institutional Repository (USU-IR).

Suprapedi, Muljadi, & Sardjono, P. (2018). The characterization of ceramic alumina prepared by using additive glass beads. IOP Conf. Series: Materials Science and Engineering, vol. 299, pp. 012043.




DOI: http://dx.doi.org/10.36055/tjst.v16i2.9075

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Teknika: Jurnal Sains dan Teknologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.