Pengaruh waktu tahan dan siklus spheroidizing terhadap sifat mekanik dan struktur mikro baja karbon rendah JIS G 3302 Grade SGC 400

Angga Pamilu Putra, Andinnie Juniarsih, Alfirano Alfirano

Abstract


Spheroidizing annealing adalah suatu proses untuk memperbaiki nilai elongasi baja JIS G 3302 grade SGC 400 hasil pengerjaan dingin yang memiliki elongasi rendah. Penelitian ini, bertujuan untuk meningkatkan elongasi baja dengan mengetahui pengaruh waktu tahan dan siklus spheroidizing dengan menggunakan metode cyclic heat treatment terhadap struktur mikro dan sifat mekanik dari baja 0,14% karbon. Baja karbon rendah ini dilakukan proses perlakuan panas pada temperatur 630oC, dengan waktu tahan selama
15, 30, dan 45 menit. Selanjutnya dilakukan variasi siklus spheroidizing sebanyak 1, 3 dan 5 siklus yang masing-masing ditahan selama 6 menit lalu didinginkan di udara bertekanan dengan menggunakan blower. Selanjutnya baja karbon rendah tersebut dilakukan uji tarik, uji kekerasan Vickers dan dilakukan pengamatan struktur mikro dengan menggunakan mikroskop optik dan juga scanning electron microscope. Dari hasil percobaan diperoleh sifat mekanik sampel yang memenuhi standar JIS G3302 grade SGC 400 yaitu sampel pada waktu tahan 15 menit dengan 3 dan 5 siklus pemanasan. Pada range ini diperoleh nilai kuat tarik 522 dan 481 MPa, kuat luluh 429 dan 30 MPa, dan elongasi 20 dan 24%. Sementara itu, pada waktu tahan 30 menit dengan 1, 3, dan 5 siklus pemanasan diperoleh kuat tarik 455, 415 dan 422 MPa, kuat luluh 361, 307 dan 313 MPa, dan elongasi 33, 37 dan 37%. Perubahan sifat mekanik baja ini disebabkan perubahan morfologi perlit menjadi ferit dan sementit dengan morfologi spheroid (fragmented-lamell) saat spheroidizing annealing.

 

Spheroidizing annealing aims to improve the elongation of JIS G 3302 grade SGC 400 cold-worked steel which has low in elongation. The purpose of this study is to increase the elongation of steel by determining the effect of holding time and spheroidizing cycles using the cyclic heat treatment method on the microstructure and mechanical properties of 0.14% carbon steel. This low carbon steel was subjected to a heat treatment process using a temperature of 6300C, with a holding time of 15, 30, and 45 minutes and variations of spheroidizing cycles of 1, 3 and 5 cycles, with a holding time of 6 minutes and then cooled in forced-air cooling using a blower. Furthermore, this low carbon steel was subjected to tensile tests, Vickers hardness tests and microstructure observations using an optical microscope and a scanning electron microscope. From the experimental results, the mechanical properties of the sample that meet the JIS G3302 grade SGC 400 standard were samples at a holding time of 15 minutes with 3 and 5 heating cycles. In this range, the tensile strengths were 522 and 481 MPa, yield strength of 429 and 30 MPa, and elongation of 20 and 24%. Meanwhile, at the holding time of 30 minutes with 1, 3, and 5 heating cycles, the tensile strengths were 455, 415 and 422 MPa, yield strengths of 361, 307 and 313 MPa, and elongation of 33, 37 and 37%. The difference in mechanical properties is due to changes in the morphology of pearlite into ferrite and cementite with spheroid morphology (fragmented-lamell) during spheroidizing annealing

 


Keywords


Baja karbon rendah; JIS G 3302 grade SGC 400; Cycle heat treatment; Spheroidizing; Cylic spheroidizing;

Full Text:

PDF (Indonesian)

References


Trenggono, A. & Alfirano. (2016). Efek parameter laku panas terhadap sifat nekanis baja paduan rendah kekuatan tinggi. Jurnal Teknika, vol. 12, no. 1, pp. 43-50.

Safarov, I. M., Korznikov, A. V., Galeyef, R., Sergeev, S., Gladkovskii, S. V., Borodin, E. M., & Pyshmintsev, I. Yu. (2014). Strength and impact toughness of low-carbon steel with fibrous ultrafine-grained structure. The Physics of Metals and Metallography, vol. 115, no. 3, pp. 295-302.

Canale L. C. F., Vatavuk, J., & Totten, G. E. (2014). Introduction to Steel Heat Treatment. Elsevier Ltd.

Japanese Industrial Standard. (2010). Ferrous Materials & Metallurgy II. Tokyo: Japanese Standard Association.

Callister Jr., W. D. (2007). Material Science and Engineering: An Introduction 7th Edition. New York: John Wiley and Sons, Inc.

Totten., E. G. (2006). Steel Heat Treatment Handbook 2nd Edition. USA: CRC Press.

Yin, Y. J., Sun, J. Q., Zhao, A., & Gou, J. (2018). Ultra low carbon steel spheroidization and torsion. Journal of Iron and Steel Research

International, vol. 25, pp. 968–974.

Wang, Z. Q. Lv. B., Wang, Z. H., Sun, S. H., & Fu, W. T. (2013). Effect of cyclic heat treatments on spheroidizing behavior of cementite in high carbon steel. Materials Science and Engineering: A, vol. 574, pp. 143–148.

Schaneman Jr., R. A. (2009). The effects of prior microstrucure on spheroidizing kinetics and cold workability in bar steels [Master Thesis]. Colorado: Faculty and Board of Trustees of the Colorado School of Mines.

Mishra, S., Mishra, A., Show, B. K., & Maity, J. (2017). Simultaneous enhancement of ductility and strength in AISI 1080 steel through a typical cyclic heat treatment. Materials Science and Engineering: A, vol. 688, pp. 262-271.

Kamyabi-Gol, A., & Sheikh-Amiri, M. (2010). Spheroidizing kinetics and optimization of heat treatment parameters in CK60 steel using taguchi robust design. Journal of Iron and Steel Research International, vol. 17, no 4, pp. 45-52.

Saha, A., Mondal, D. K., Koushik, B., & Maity, J. (2012). Microstructural modifications and changes in mechanical properties during cyclic heat treatment of 0.16 % carbon steel. Materials Science and Engineering: A, vol. 534, pp. 465–75.

Maji, S., Subhani A. R., Show, B. K., Maity, J. (2017). Effect of cooling rate on microstructure and mechanical properties of eutectoid steel under cyclic heat treatment. Journal of Materials Engineering and Performance, vol. 26, no. 7, pp. 3058-3070.

Saha, A., Mondal, D. K., Maity, J. (2010). An alternate approach to accelerated spheroidization in steel by cyclic annealing. Journal of Materials Engineering and Performance, vol. 20, pp. 114–119.

Japanese Industrial Standard, Z 2244. (2003). Vickers Hardness Test – Test Method. Tokyo: Japanese Standard Association.

Japanese Industrial Standard, Z 2201. (1998). Test Pieces for Tensile Test for Metallic Materials. Tokyo: Japanese Standard Association.




DOI: http://dx.doi.org/10.36055/tjst.v16i2.9176

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Teknika: Jurnal Sains dan Teknologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.