Analisis pengembangan hidrokinetik turbin gorlov akibat penambahan luas bidang tangkap

Try Antomo, I Made Kamiana, Dwi Anung Nindito

Abstract


Turbin gorlov merupakan salah satu teknologi turbin hidrokinetik yang berbeda dengan turbin air konvensional. Turbin gorlov dapat dipasang secara vertikal maupun horizontal dan mampu digunakan pada kondisi low-head, namun memiliki luas bidang tangkap yang bergantung dari dimensi lengkung bilah heliks. Hidrokinetik turbin gorlov digunakan sebagai pembangkit listrik tenaga hidro dengan memanfaatkan energi kinetik dari aliran air sungai maupun pasang surut. Turbin DNA merupakan jenis turbin baru hasil pengembangan desain turbin gorlov dengan cara menambahkan komponen pair yang bertujuan menambah luas bidang tangkap ()A. Studi ini dilakukan dengan membandingkan performa yang dihasilkan turbin gorlov dan turbin DNA. Pengujian dilakukan pada saluran prismatik dengan variasi kecepatan aliran 0,188 – 0,222 m/s. Pengaruh penambahan luas bidang tangkap ()A. f dengan melakukan penambahan komponen pair menyebabkan penurunan performa CPf dan  pada desain turbin DNA. Turbin gorlov menghasilkan tip-speed ratio () 2,11 – 2,24, dan coefficient of power ()C 0,26 – 0,30. Turbin DNA menghasilkan tip-speed ratio () dengan range 0,91 – 1,07 dan coefficient of power ()C 0,19 – 0,24. Rotasi per menit (RPM) yang dihasilkan dari turbin gorlov dan turbin DNA masing-masing adalah 31,1 – 38,1 dan 13,0 – 17,6. Torsi () turbin gorlov dan turbin DNA masing-masing adalah 0,025 – 0,038 Nm dan 0,054 – 0,085 Nm. Pengaruh penambahan luas bidang tangkap dengan penambahan komponen pair menyebabkan rotasi per menit (RPM) turbin DNA mengalami penurunan, akan tetapi memiliki keunggulan dalam nilai torsi () yang dihasilkan. Hal ini terlihat dari kecenderungan grafik torsi () terhadap penambahan kecepatan aliran pada sudut rotasi 0    90, 120    210 dan 240    330.

 

The Gorlov turbine is a hydrokinetic turbine technology different from conventional water turbine. It can be mounted vertically or horizontally and also be used in low-head conditions however, it has a frontal area which depends on the curved dimensions of helical blade. Hydrokinetic turbines are used for hydroelectric power plants by converting kinetic energy from river and tidal streams. The DNA turbine is a new type of turbine developed by Gorlov turbine design with the addition of pair components aiming to
increase the frontal area ()A. This study compared performance of Gorlov turbine and DNA turbine. The testing was carried out on a prismatic channel with a flow velocity variation of 0.188 - 0.222 m/s. The effect of increasing frontal area  performance on DNA turbine design. Gorlov turbine produced a tip-speed ratio f ()A with the addition of pair components caused a decrease in f() 2.11 - 2.24 and coefficient of power  ()C of 0.26 - 0.30. DNA turbine produced tip-speed ratio P() of 0.91 - 1.07 and coefficient of power ()C value of 0.19 - 0.24. The rotation per minute (RPM) values resulting from Gorlov turbine and DNA turbine were 31.1 - 38.1 and 13.0 - 17.6, respectively. Torque P () of Gorlov turbine and DNA turbine were 0.025 - 0.038 Nm and 0.054 - 0.085 Nm, respectively. The effect of increasing frontal area ()A with the addition of pair components caused the rotation per minute (RPM) of the DNA turbine to decrease. However, it had an advantage in the resulting torque value. This could bes een from the graphical trend of torque value 0 90   , f 120 210    and () to the increase in the flow velocity at rotation angles of 240 330   .  The Gorlov turbine is a hydrokinetic turbine technology different from conventional water turbine. It can be mounted vertically or horizontally and also be used in low-head conditions however, it has a frontal area which depends on the curved dimensions of helical blade. Hydrokinetic turbines are used for hydroelectric power plants by converting kinetic energy from river and tidal streams. The DNA turbine is a new type of turbine developed by Gorlov turbine design with the addition of pair components aiming to increase the frontal area ()A. This study compared performance of Gorlov turbine and DNA turbine. The testing was carried out on a prismatic channel with a flow velocity variation of 0.188 - 0.222 m/s. The effect of increasing frontal area  performance on DNA turbine design. Gorlov turbine produced a tip-speed ratio f ()A with the addition of pair components caused a decrease in f() 2.11 - 2.24 and coefficient of power ()C of 0.26 - 0.30. DNA turbine produced tip-speed ratio P () of 0.91 - 1.07 and coefficient of power ()C value of 0.19 - 0.24. The rotation per minute (RPM) values resulting from Gorlov turbine and DNA turbine were 31.1 - 38.1 and 13.0 - 17.6, respectively. Torque P() of Gorlov turbine and DNA turbine were 0.025 - 0.038 Nm and 0.054 - 0.085 Nm, respectively. The effect of increasing frontal area ()A with the addition of pair components caused the rotation per minute (RPM) of the DNA turbine to decrease. However, it had an advantage in the resulting torque value. This could be seen from the graphical trend of torque value 0 90   , f 120 210    and () to the increase in the flow velocity at rotation angles of 240 330   .


Keywords


Hidrokinetik; Turbin Gorlov; Pair; Luas Bidang Tangkap; Turbin DNA;

Full Text:

PDF (Indonesian)

References


A. H. Elbatran, M. W. Abdel-Hamed, O. B. Yaakob, Y. M. Ahmed, and M. Arif Ismail, “Hydro Power and Turbine Systems Reviews,” J. Teknol., vol. 74, no. 5, pp. 83–90, 2015.

A. Johnston and M. Wosnik, “Analytical and Numerical Modeling of Performance Characteristics of Cross-Flow Axis Hydrokinetic Turbines,” in ASME-JSME-KSME 2011 Joint Fluids Engineering Conference, AJK 2011, 2011, vol. 1, no. PARTS A, B, C, D, pp. 1907–1918.

A. Kumar and R. Saini, “Development of Hydrokinetic Power Generation System: a Review,” Int. J. Eng. Sci. Adv. Technol., vol. 4, no. 6, pp. 464–477, 2014.

A. N. Gorban’, A. M. Gorlov, and V. M. Silantyev, “Limits of The Turbine Efficiency for Free Fluid Flow,” J. Energy Resour. Technol. Trans. ASME, vol. 123, no. 4, pp. 311–317, 2001.

C. Rakesh, A. T. V. Joseph, A. H. A. Krishna, A. M, and N. Charan, “Theoretical Study and Performance Test of Lucid Spherical Turbine,” Int. J. Innov. Res. Sci. Technol., vol. 3, no. 02, pp. 418–423, 2016.

D. A. Nindito and I. M. Kamiana, “Perencanaan Model PLTA Skala Kecil Berbasis Teknologi Lokal di Daerah Pemukimam Tepi Sungai.” PROTEKSI, pp. 1–7, 2010.

E. Alvarez Alvarez, M. Rico-Secades, E. L. Corominas, N. Huerta-Medina, and J. Soler Guitart, “Design and Control Strategies for A Modular Hydrokinetic Smart Grid,” Int. J. Electr. Power Energy Syst., vol. 95, pp. 137–145, 2018.

E. Muljadi, A. Wright, V. Gevorgian, J. Donegan, C. Marnagh, and J. McEntee, “Power Generation for River and Tidal Generators,” Aug. 2016.

Erinofiardi et al., “A Review on Micro Hydropower in Indonesia,” Energy Procedia, vol. 110, no. December 2016, pp. 316–321, 2017.

F. Hatomi, “Analisis CFD Turbin Pembangkit Listrik Tenaga Arus Laut pada Kapasitas 1.2 kW,” Universitas Indonesia, 2012.

G. G. Portnov and I. Z. Palley, “Application of The Theory of Naturally Curved and Twisted Bars to Designing Gorlov’s Helical Turbine,” Mech. Compos. Mater., vol. 34, no. 4, pp. 343–354, 1998.

H. Joshi, A. Dwivedi, A. Anand, and P. P. Patil, “Design and Analysis of a Cross Flow Hydrokinetic Turbine Using Computational Fluid Dynamics,” J. Basic Appl. Eng. Res. Print, vol. 1, no. 3, pp. 2350–77, 2014.

J. Khan, “River Current Turbine : Modeling and System Design,” Renewable Energy Systems, Dec. 2004.

J. McGlynn, “River Hydrokinetic Energy Overview,” ESMAP Training Program, The Energy Innovation Center, Jun. 2014.

K. Sornes, “Small-scale Water Current Turbines for River Applications,” Zero Emission Resource Organization, no. January, pp. 1–19, 2010.

M. I. Yuce and A. Muratoglu, “Hydrokinetic Energy Conversion Systems: A Technology Status Review,” Renew. Sustain. Energy Rev., vol. 43, pp. 72–82, 2015.

M. T. Fathurrahman, D. A. Irfanto, and B. Bimantoro, “HIVESS (High Energy Generator Vesser): Kapal Pembangkit Listrik Menggunakan Gorlov Helical Turbine Sebagai Solusi Pemenuhan Kebutuhan Listrik di Kawasan Laut Sawu Nusa Tenggara Timur,” 2018.

Niharman and R. Sipahutar, “The Effect of Steering Blade Angles of Helical Turbine for Power Generation in Irigation Dam of Seluma Bengkulu,” J. Mech. Sci. Eng., vol. 2, no. 1, pp. 13–16, 2015.

P. Bachant and M. Wosnik, “Experimental Investigation of Helical Cross-Flow Axis Hydrokinetic Turbines, Including Effects Of Waves And Turbulence,” in Proceedings of the ASME-JSME-KSME 2011 Joint Fluids Engineering Conference, 2011, pp. 1–12.

P. Bachant and M. Wosnik, “Performance Measurements of Cylindrical and Spherical-Helical Cross-Flow Marine Hydrokinetic Turbines, With Estimates Of Exergy Efficiency,” Renew. Energy, vol. 74, pp. 318–325, 2015.

P. Gunai, S. Gumaste, S. Gathe, and A. Das, “Design, Analysis and Improvisation of Helical Cross Flow Hydro Kinetic Turbine,” Int. J. Adv. Eng. Res. Sci., vol. 3, no. 9, pp. 36–41, 2016.

P. Gunai, A. Bhonge, and K. Joshi, “Numerical Analysis of Crosss Flow Hydokinetic Turbine by Using Computational Fluid Dynamics,” Int. J. Adv. Eng. Res. Sci., vol. 3, no. 11, pp. 105–109, 2016.

P. K. Talukdar, S. Kumar, V. Kulkarni, A. K. Das, and U. K. Saha, “On Site Testing of A Zero Head Vertical Axis Helical Water Turbine for Power Generation,” ASME 2015 Gas Turbine India Conf. GTINDIA 2015, no. December, 2015.

P. K. Talukdar, V. Kulkarni, D. Dehingia, and U. K. Saha, “Evaluation of A Model Helical Bladed Hydrokinetic Turbine Characteristics from In-Situ Experiments,” ASME 2017 11th Int. Conf. Energy Sustain. ES 2017, collocated with ASME 2017 Power Conf. Jt. with ICOPE 2017, ASME 2017 15th Int. Conf. Fuel Cell Sci. Eng. Technol. ASME 201, pp. 1–6, 2017.

R. J. Cavagnaro and B. Polagye, “Field Performance Assessment of A Hydrokinetic Turbine,” Int. J. Mar. Energy, vol. 14, pp. 125–142, 2016.

R. M. Lopulalan, S. Sarwito, and E. S. Koenhardono, “Desain Blade Turbin Pembangkit Listrik Tenaga Arus Laut di Banyuwangi Berbasis CFD,” J. Tek. ITS, vol. 5, no. 2, pp. 424–430, 2016.

S. Honors, L. Clinical, P. Contributions, and M. Appointments, Encyclopedia of Clinical Neuropsychology. 2011.

S. Phommachanh, P. Sutikno, and O. Shinnosuke, “Duct Water Current Turbine and Extremely Low Head Helical Turbine,” AIP Conf. Proc., vol. 1225, no. 2010, pp. 213–224, 2010.

S. Pongduang, C. Kayankannavee, and Y. Tiaple, “Experimental Investigation of Helical Tidal Turbine Characteristics with Different Twists”, vol. 79. Elsevier B.V., 2015.

T. E. Putra, “Studi Potensi dan Perencanaan Bangunan Utama PLTMH di Permukiman Tepi Sungai (Studi Kasus Desa Tumbang Habangoi Kecamatan Petak Malai),” Universitas Palangka Raya, 2011.

T. Engineering, “Marine and Hydrokinetic Technology Readiness Advancement Initiative,” Maine, 2010.




DOI: http://dx.doi.org/10.36055/tjst.v16i2.9186

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Teknika: Jurnal Sains dan Teknologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.