Designing Size and Stack Number of Fuel Cell Urban Vehicle

Intan Nazwa, Dhimas Satria, Miftahul Jannah, Erny Listijorini, Ipick Setiawan, Mekro Permana Pinem, Dedy Triawan Suprayogi, Nufus Kanani, Harly Demustila

Abstract


A fuel cell converts the energy in the chemical reaction of a continuously supplied fuel and its oxidizing agent into electrical energy. Fuel cells are used in various industries, including the automotive industry. In this context, fuel cell electric vehicles (FCEVs) have emerged as a promising alternative that offers zero emissions and competitive performance. This work was conducted to obtain a fuel cell design and determine the fuel cell modeling that suits the needs of FCEVs. The Pahl and Beitz method with QFD is used. It was found that the type of fuel cell used is PEMFC (Proton Exchange Membrane Fuel Cell) with platinum electrode material, and the fuel used is hydrogen on a small scale. Overall, fuel cell dimensions were 175 x 259 x 175 mm, and the number of fuel cell stacks that can be arranged is 35. With this geometry, the factor of safety value obtained at the stack fuel cell is 26, and at the end plate fuel cell 2.4, this value indicates that the PEMFC design is safe. Then, the output voltage is 50.55 V, and the output current is 25.27 A, so the power generated is 1.277 kW.

Keywords


Fuel cell, Proton Exchange Membrane Fuel Cell, Safety Factor

Full Text:

PDF

References


Adnan, M. F., Oninda, M. A., Nishat, M. M., & Islam, N. (2017). Design and Simulation of a DC - DC Boost Converter with PID Controller for Enhanced Performance. International Journal of Engineering Research, 27-32.

Appleby, A. J. (1996). Fuel Cell Technology: Status And Future Prospects. London: Elsevier Science Ltd.

Ardhi, S., & Gunawan, T. P. (2022). Permodelan Konverter DC to DC Tipe Boost Converter dengan Pengendali Proporsional Integral (PI). Jurnal Teknik Industri, 13-24.

Chandrasa, G. T. (2006). FuelCell Hidrogen Tipe PEM Sebagai Sumber Energi Mobil Listrik Ultra Ringan. Jurnal Ilmiah Teknologi Energi, 31-40.

Dewi, E. L., Ismujanto, T., & Chandrasa, G. T. (2008). Pengembangan dan Aplikasi Fuel Cell. Prosiding Seminar Nasional Teknoin 2008 Bidang Teknik Mesin, 51-54.

Dobrovolsky. (1989). Machine elements : a textbook. Moscow : Peace Publisher.

Emadi, A., Khaligh, A., Nie, Z., & Lee, Y. J. (2009). Integrated Power Electronic Converters and Digital Control. CRC Press.

Guo, H., Chen, L., & Ismail, S. A. (2022). Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells: A Review. materials, 1-20.

Hirschenhofer, J. H. (1998). Fuel Cell Handook. Morgantown: Federal Energy Technology Center.

Kuan, Y. D., Ke, T. R., & Lyu, J. L. (2020). Development of a Current Collector with a Graphene Thin Film for a Proton Exchange Membrane Fuel Cell Module. Molecules.

Lindorfer, J., Rosenfeld, D. C., & Böhm, H. (2020). Fuel Cells: Energy Conversion. In T. M. Letcher, Future Energy: Improved, Sustainable and Clean Options for Our Planet (pp. 495-513). AUSTRIA: Elsevier.

Malasari, N. N., Onggo, H., & Rokhmat, M. (2015). Integrasi Polymer Electrolyte Membrane (PEM) Fuel Cell dan Analisis Pengaruh Jumlah Sel Terhadap Performasi Berdasarkan Data Kurva Karakteristik. Jurnal Fakultas Teknik , 1-6.

Nassersharif, B. (2022). Engineering Capstone Design.

Ogata, K. (2010). Modern Control Engineering. New Jersey: Pearson Education, Inc.

Outeiro. (2009). A New Parameter Extraction Method For Accurate Modeling of PEM Fuel Cells. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 978-988.

Pahl, G., & Beitz, W. (2007). Engineering Design A Systematic Approach.

Putri, S. D., & Aswardi. (2020). Rancang Bangun Buck-Boost Converter menggunakan Kendali PID. JTEV (JURNAL TEKNIK ELEKTRO DAN VOKASIONAL), 258-272.

Qian, X., Shi, Z., Zhang, J., & Xuan, D. (2017). Measurement and control platform of the proton exchange membrane of fuel cell based on the MATLAB/Simulink. Chinese Automation Congress (CAC), 5236-5241.

Ridlo, M. R. (2020). Perkembangan Riset MEA untuk PEMFC. Artikel Pemakalah Pararel, 531-536.

Sato, T. (2023). Recent Development Trends in Materials for Bipolar Plates of Proton Exchange Membrane Fuel Cells (PEMFCs) and Kobe Steel's Activities. KOBELCO TECHNOLOGY REVIEW, 79-86.

Sharma, M., Pachauri, R. K., & Goel, S. K. (2015). MATLAB/Simulink modeling and analysis of parametric effects on PEMFC performance. International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE), 226-231.

U.S Departement of energy. (2000). Fuel Cell Handbook. EG&G Services Parsons.

Wilberforce, T. (2022). A study into Proton Exchange Membrane Fuel Cell power and voltage prediction using Artificial Neural Network. Elsevier, 12843-12852.

Winglear, P. J. (2005). Dynamic Characteristics of PEM Fuel Cell. IEEE, 1635-1641.




DOI: http://dx.doi.org/10.36055/fwl.v10i1.25506

Refbacks

  • There are currently no refbacks.