PENGARUH SUSUNAN DAN JUMLAH LUBANG BAUT TERHADAP KEKUATAN RANGKA MAIN LANDING GEAR UNTUK PESAWAT UAV

Lasinta Ari Nendra Wibawa

Abstract


This study examined the effect of the arrangement and number of bolt holes on the strength of the main landing gear frame for UAV aircraft using the finite element method. Linear static analysis was carried out using Autodesk Inventor Professional 2017 software. Main landing gear frame using Aluminum alloy 5083. Variable arrangement and number of bolt holes were 3 bolts (series), 3 bolts (zigzags), 4 bolts (series), 4 bolts (zigzags) ), 5 bolts (series), and 5 bolts (zigzags). The simulation results show that the safety factor is for the arrangement and the number of bolts 3 bolts (series), 3 bolts (zigzags), 4 bolts (series), 4 bolts (zigzags), 5 bolts (series), and 5 bolts (zigzags) were 3.498, 3.325, 3.843, 3.793, 3.401, and 3.338.

 


Keywords


Aluminium 5083, Autodesk Inventor 2017, Finite Element Analysis, Main Landing Gear, Number of Bolt Holes

Full Text:

PDF

References


Al-banaa, Ali, M. S. ., & Pires, R. (2014). Stress Analysis on Main Landing Gear for Small Aircraft. Al-Rafidain Engineering, 22(1), 26–33.

Dutta, A. (2016). Design and Analysis of Nose Landing Gear. International Research Journal of Engineering and Technology (IRJET), 3(10), 261–266.

Franco, L. A. L., Silva, O. M. M., Campos, P. P. De, & Dollinger, C. F. A. Von. (2006). Fatigue fracture of a nose landing gear in a military transport aircraft, 13, 474–479. https://doi.org/10.1016/j.engfailanal.2004.12.025

Hirokawa, R., Kubo, D., Suzuki, S., Meguro, J., & Suzuki, T. (2007). A Small UAV for Immediate Hazard Map Generation. American Institute of Aeronautics and Astronautics, (May), 1–6.

Huang, Y., Li, J., & Fan, N. (2008). Image Mosaicing for UAV Application. 2008 International Symposium on Knowledge Acquisition and Modeling, 663–667. https://doi.org/10.1109/KAM.2008.73

Kumar, R. R., Dash, P. K., & Basavaraddi, S. R. (2013). Design And Analysis of Main Landing Gear Structure of A Transport Aircraft and Fatigue Life Estimation. International Journal of Mechanical and Production Engineering, 1(4), 22–26.

Prakash, J. A., Joshua, P., & Santosh, D. (2018). Design and Analysis of Aircraft Landing Gear Axle. International Journal of Advance Research, Ideas and Innovations in Technology, 4(2), 1550–1555.

Swarnakiran, S., & Rohith, S. (2018). Numerical Analysis of Nose Landing Gear System. International Research Journal of Engineering and Technology (IRJET), 5(4), 1978–1984.

Wibawa, L. A. N. (2018a). Desain dan Analisis Kekuatan Rangka Tempat Sampah di Balai LAPAN Garut Menggunakan Metode Elemen Hingga. Turbulen: Jurnal Teknik Mesin, 1(2), 64–68.

Wibawa, L. A. N. (2018b). Merancang Komponen Roket 3D dengan Autodesk Inventor Professional 2017. Buku Katta. Retrieved from https://play.google.com/books/reader?id=qHpKDwAAQBAJ&lr=&printsec=frontcover

Wibawa, L. A. N. (2018c). Simulasi Kekuatan Komponen Sarana Pengujian Roket Menggunakan Autodesk Inventor Professional 2017. Buku Katta. Retrieved from https://play.google.com/books/reader?id=BD1LDwAAQBAJ&hl=id&lr=&printsec=frontcover

Wibawa, L. A. N., & Himawanto, D. A. (2018). Analisis Ketahanan Beban Dinamis Material Turbin Angin Terhadap Kecepatan Putar Rotor (Rpm) Menggunakan Metode Elemen Hingga. Jurnal Simetris, 9(2), 803–808. https://doi.org/10.24176/simet.v9i2.2343




DOI: http://dx.doi.org/10.36055/fwl.v0i0.4928

Refbacks

  • There are currently no refbacks.