Forecasting the Open Unemployment Rate in Banten Province Using the FB Prophet Method in Python Programming Language
Abstract
Keywords
Full Text:
PDFReferences
Direktorat Statistik Kependudukan dan Ketenagakerjaan, Booklet SAKERNAS Agustus 2021. Badan Pusat Statistik, 2021.
BPS Indonesia, “Tingkat pengangguran terbuka menurut provinsi - tabel statistik,” Badan Pusat Statistik Indonesia. [Online]. Available: https://www.bps.go.id/id/statistics-table/2/NTQzIzI=/tingkat-pengangguran-terbuka-menurut-provinsi.html
International Monetary Fund, World Economic Outlook: Policy Pivot, Rising Threats, October. Washington, DC, 2024.
R. N. Puspita, “Peramalan Tingkat Pengangguran Terbuka Provinsi Banten Dengan Metode Triple Exponential Smoothing,” Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika, vol. 3, no. 2, pp. 358–366, 2022, doi: 10.46306/lb.v3i2.138.
S. J. Taylor and B. Letham, “Business Time Series Forecasting at Scale,” PeerJ Preprints 5:e3190v2, vol. 35, no. 8, pp. 48–90, 2017.
F. B. Prakoso, G. Darmawan, and A. Bachrudin, “Penerapan Metode Facebook Prophet Untuk Meramalkan Jumlah Penumpang Trans Metro Bandung Koridor 1,” ARMADA : Jurnal Penelitian Multidisiplin, vol. 1, no. 3, pp. 133–147, 2023, doi: 10.55681/armada.v1i3.416.
B. H. Winarno, D. Kusumawati, H. A. Triyanto, and B. H. Winarno, “PENERAPAN MACHINE LEARNING (MODEL PROPHET) DALAM PREDIKSI PERMINTAAN PRODUK UNTUK MENGOPTIMALKAN INVENTORI,” no. November, pp. 168–174, 2024.
A. Subashini, K. Sandhiya, S. Saranya, and U. Harsha, “Forecasting Website Traffic Using Prophet Time Series Model,” International Research Journal of Multidisciplinary Technovation, vol. 1, no. 1, pp. 56–63, 2019, doi: 10.34256/irjmt1917.
Y. Ensafi, S. H. Amin, G. Zhang, and B. Shah, “Time-series forecasting of seasonal items sales using machine learning – A comparative analysis,” International Journal of Information Management Data Insights, vol. 2, no. 1, p. 100058, 2022, doi: 10.1016/j.jjimei.2022.100058.
D. Borges and M. C. V. Nascimento, “COVID-19 ICU demand forecasting: A two-stage Prophet-LSTM approach,” Appl Soft Comput, vol. 125, p. 109181, 2022, doi: 10.1016/j.asoc.2022.109181.
DOI: http://dx.doi.org/10.62870/tjs.v1i1.31309
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Ferdian Bangkit Wijaya, Deananta Pramudia Putra, Mahsa Azzahra
This work is licensed under Creative Commons Attribution 4.0 International