Analyzing Temperature Distribution in Multiple Fin Geometries to Optimize Heat Transfer Efficiency

Devia Gahana Cindi Alfian, Dicky Januarizky Silitonga

Abstract


This study is quantitative research using Computational Fluid Dynamics (CFD) simulations to optimize pin fin design. Samples include aluminum pin fins with three different geometries: circular, square, and cone, and side lengths of 5 mm, 10 mm, and 15 mm. CFD simulations are conducted to quantitatively analyze temperature distribution across the surface and height of the fins. Results show that the highest temperature is localized at the base plate and decreases along the fin height. Circular and square fins demonstrate more uniform temperature distributions, while cone fins show significant gradients between base and tip. Smaller fin side lengths result in greater temperature differences. This research provides a detailed understanding of how fin geometry impacts heat transfer efficiency and temperature distribution, offering valuable insights for the development of more efficient fin designs in thermal management applications.


Keywords


Fin Geometries, Fin Size, Simulation, Temperature Distribution

Full Text:

PDF

References


B. Freegah, A. A. Hussain, A. H. Falih, and H. Towsyfyan, “CFD analysis of heat transfer enhancement in plate-fin heat sinks with fillet profile: Investigation of new designs,” Thermal Science and Engineering Progress, vol. 17, Jun. 2020, doi: 10.1016/j.tsep.2019.100458.

A. Hadipour, M. Rajabi Zargarabadi, and M. Dehghan, “Effect of micro-pin characteristics on flow and heat transfer by a circular jet impinging to the flat surface,” J Therm Anal Calorim, vol. 140, no. 3, pp. 943–951, May 2020, doi: 10.1007/s10973-019-09232-2.

P. Bhandari, K. S. Rawat, Y. K. Prajapati, D. Padalia, L. Ranakoti, and T. Singh, “Design modifications in micro pin fin configuration of microchannel heat sink for single phase liquid flow: A review,” Aug. 30, 2023, Elsevier Ltd. doi: 10.1016/j.est.2023.107548.

N. Manikanda Prabu and G. Murali, “Heat transfer analysis of pin-fin profiles for aerospace application using CFD,” 2021.

N. Bessanane, M. Si-Ameur, and M. Rebay, “Numerical Study of the Temperature Effects on Heat Transfer Coefficient in Mini-Channel Pin-Fin Heat Sink,” International Journal of Heat and Technology, vol. 40, no. 1, pp. 247–257, Feb. 2022, doi: 10.18280/ijht.400129.

A. A. Sertkaya, M. Ozdemir, and E. Canli, “Effects of pin fin height, spacing and orientation to natural convection heat transfer for inline pin fin and plate heat sinks by experimental investigation,” Int J Heat Mass Transf, vol. 177, Oct. 2021, doi: 10.1016/j.ijheatmasstransfer.2021.121 527.

K. Nilpueng et al., “Effect of pin fin configuration on thermal performance of plate pin fin heat sinks,” Case Studies in Thermal Engineering, vol. 27, Oct. 2021, doi: 10.1016/j.csite.2021.101269.

N. A. Ghyadh, S. Ahmed, and M. A. R. S. Al-Baghdadi, “Enhancement of Forced Convection Heat Transfer from Cylindrical Perforated Fins Heat Sink-CFD Study,” 2021.

F.-T. Zohora, M. R. Haque, N. M. Chowdhury, M. K. Fahad, and N. F. Ifraj, “Optimization of hydrothermal performance in industrial heat sinks with innovative perforated pin fin designs: A numerical approach,” Heliyon, vol. 11, no. 1, Jan. 2025, doi: 10.1016/j.heliyon.2024.e41496.

H. Babar, H. Wu, H. M. Ali, and W. Zhang, “Hydrothermal performance of inline and staggered arrangements of airfoil shaped pin-fin heat sinks: A comparative study,” Thermal Science and Engineering Progress, vol. 37, p. 101616, Jan. 2023, doi: 10.1016/j.tsep.2022.101616.

H. Ehsani, F. N. Roudbari, S. S. Namaghi, p. Jalili, and D. D. Ganji, “Investigating thermal performance enhancement in perforated pin fin arrays for cooling electronic systems through integrated CFD and deep learning analysis,” Results in Engineering, vol. 22, p. 102016, 2024, doi: https://doi.org/10.1016/j.rineng.2024.102016.

B. Parizad Benam, A. K. Sadaghiani, V. Yağcı, M. Parlak, K. Sefiane, and A. Koşar, “Review on high heat flux flow boiling of refrigerants and water for electronics cooling,” Dec. 01, 2021, Elsevier Ltd. doi: 10.1016/j.ijheatmasstransfer.2021.121 787.

T. Ambreen, A. Saleem, and C. W. Park, “Pin-fin shape-dependent heat transfer and fluid flow characteristics of water- and nanofluid-cooled micropin-fin heat sinks: Square, circular and triangular fin cross-sections,” Appl Therm Eng, vol. 158, Jul. 2019, doi: 10.1016/j.applthermaleng.2019.11378 1.

Z. Khattak and H. M. Ali, “Thermal Analysis and Parametric Optimization Of Plate Fin Heat Sinks Under Forced Air Convection,” Thermal Science, vol. 26, no. 1, pp. 629–639, 2022, doi: 10.2298/TSCI201227081K.

S. Padmanabhan, S. Thiagarajan, A. Deepan Raj Kumar, D. Prabhakaran, and M. Raju, “Investigation of temperature distribution of fin profiles using analytical and CFD analysis,” in Materials Today: Proceedings, Elsevier Ltd, Jan. 2021, pp. 3550–3556. doi: 10.1016/j.matpr.2020.09.404.

M. Tabatabaei Malazi, K. Kaya, and A. S. Dalkılıç, “A computational case study on the thermal performance of a rectangular microchannel having circular pin-fins,” Case Studies in Thermal Engineering, vol. 49, p. 103111, 2023, doi: https://doi.org/10.1016/j.csite.2023.1 03111.

J. Jaseliūnaitė and M. Šeporaitis, “Performance optimisation of microchannel pin-fins using 2D CFD,” Appl Therm Eng, vol. 206, Apr. 2022, doi: 10.1016/j.applthermaleng.2022.11804 0.

Y. Liao, C. Schuster, S. Hu, and ..., “CFD modelling of flashing instability in natural circulation cooling systems,” International…, 2018, [Online]. Available: https://asmedigitalcollection.asme.org

/ICONE/proceedings- abstract/ICONE26/V008T09A026/275 964

K. Subahan, E. S. Reddy, and R. M. Reddy, “CFD Analysis Of Pin-Fin Heat Sink Used In Electronic Devices,” International Journal of Scientific & Technology Research, vol. 8, no. 09, 2019, [Online].

Available: www.ijstr.org

H. Pant, D. Shukla, S. Rathor, and S. Senthur Prabu, “Heat transfer analysis on different pin fin types using Solid Works,” IOP Conf Ser Earth Environ Sci, vol. 850, no. 1, p. 012028, 2021, doi: 10.1088/1755-1315/850/1/012028.

R. Jain, S. K. Pal, and S. B. Singh, “Investigation on effect of pin shapes on temperature, material flow and forces during friction stir welding: A simulation study,” Proc Inst Mech Eng B J Eng Manuf, vol. 233, no. 9, pp. 1980–1992, Jul. 2019, doi: www.ijera.com, vol. 12, pp. 96–101, 2022, doi: 10.9790/9622-121296101.

Y. Li, L. Gong, M. Xu, and Y. Joshi, “Enhancing the performance of aluminum foam heat sinks through integrated pin fins,” Int J Heat Mass Transf, vol. 151, Apr. 2020, doi: 10.1016/j.ijheatmasstransfer.2020.119376.

M. E. Polat, F. Ulger, and S. Cadirci, “Multi-objective optimization and performance assessment of microchannel heat sinks with micro pin-fins,” International Journal of Thermal Sciences, vol. 174, Apr. 2022, doi: 10.1016/j.ijthermalsci.2021.107432.

A. J. Jubear and A. A. F. Al-Hamadani, “The Effect of Fin Height On Free Convection Heat Transfer From Rectangular Fin Array,” Int J Recent Sci Res, vol. 6, pp. 5318–5323, 2015, [Online]. Available: http://www.recentscientific.com

D. Suker, H. Abed, M. Al-Jewaree, and A. Backar, “The Effect of Fin Orientation on Thermal Fin Performance by Natural Convections: An Experimental Investigation,” International Journal of Engineering Research and Applications www.ijera.com, vol. 12, pp. 96–101, 2022, doi: 10.9790/9622-121296101.

C. N. Zhang and X. F. Li, “Temperature distribution of conductive-convective-radiative fins with temperature-dependent thermal conductivity,” International Communications in Heat and Mass Transfer, vol. 117, Oct. 2020, doi: 10.1016/j.icheatmasstransfer.2020.104799.

J. Y. Ho, Y. S. See, K. C. Leong, and T. N. Wong, “An experimental investigation of a PCM-based heat sink enhanced with a topology-optimized tree-like structure,” Energy Convers Manag, vol. 245, Oct. 2021, doi: 10.1016/j.enconman.2021.114608.

C. Yuan, R. Hanus, and S. Graham, “A review of thermoreflectance techniques for characterizing wide bandgap semiconductors’ thermal properties and devices’ temperatures,” Dec. 14, 2022, American Institute of Physics Inc. doi: 10.1063/5.0122200.

I. W. Árpád, J. T. Kiss, and D. Kocsis, “Role of the volume-specific surface area in heat transfer objects: A critical thinking-based investigation of Newton’s law of cooling,” Int J Heat Mass Transf, vol. 227, Aug. 2024, doi: 10.1016/j.ijheatmasstransfer.2024.125 535.

S. Jawairia and J. Raza, “Optimization of heat transfer rate in a moving porous fin under radiation and natural convection by response surface methodology: Sensitivity analysis,” Chemical Engineering Journal Advances, vol. 11, Aug. 2022, doi: 10.1016/j.ceja.2022.100304.




DOI: http://dx.doi.org/10.30870/vanos.v10i1.28606

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License