Light Synergy: Solar Cell Output Optimization through Light Convergence Method (Integration of Convex Lens and Light Reflection)
Abstract
This study experimentally examines how integrating a convex (Fresnel) lens and a reflector affects solar cell output performance, analyzing impacts of variations in lens distance, illuminance, and associated temperature changes. Experimental methodology involved testing various lens-to-cell distance configurations under both natural sunlight and artificial lighting. Results under direct sunlight demonstrate significant enhancement: a Fresnel lens positioned at an optimal 10 cm distance achieved a peak power output of 0.939 W, a 199.04% increase compared to baseline power (0.314 W) measured without optical components. Reflector use proved beneficial by redirecting unabsorbed light onto the solar cell's active surface and promoting more uniform distribution of concentrated light. This potentially reduces severe localized temperature gradients (hot spots), even as overall cell temperature increased due to high illuminance levels from light concentration, although specific temperature correlation analysis warrants further study. However, system effectiveness was negligible under tested artificial lighting conditions, highlighting a dependency on natural sunlight characteristics. These findings underscore potential for utilizing simple, cost-effective optical components to substantially optimize solar energy harvesting, particularly for applications in environments with consistent sunlight exposure, thereby advancing sustainable renewable energy solutions.
Keywords
Full Text:
PDFReferences
E. Bekbolsynov, “Comprehensive analysis of solar cell behavior: effects of light intensity, temperature, and operational modes,” Technobius Phys., vol. 2, no. 2, p. 0013, May 2023, doi: 10.54355/tbusphys/2.2.2024.0013.
T. YUAN, S. HOU, X. ZHANG, P. LI, and D. TANG, “Research on the Influence of Different Light Intensities on the Characteristics of Solar Cells,” Mech. Eng. Sci., vol. 6, no. 2, Jan. 2025, doi: 10.33142/mes.v6i2.15055.
S. N. A. Mohd Suhaimi, S. N. Mohd Nor, N. A. Zambri, F. Mustafa, S. Y. Sim, and N. Salim, “Development of Steg with Concentrating System,” Semarak Int. J. Electron. Syst. Eng., vol. 3, no. 1, pp. 1–14, Sep. 2024, doi: 10.37934/sijese.3.1.114.
F. Chen, Y. Wang, A. R. bin M. Yusoff, Y. Yu, and P. Gao, “Unlocking the Potential of Rare Earth‐Doped Down‐Conversion Materials for Enhanced Solar Cell Performance and Durability,” Sol. RRL, vol. 9, no. 5, Mar. 2025, doi: 10.1002/solr.202400798.
H. Kim, M. Shin, and H. Cho, “Thermal and exergy performance enhancement of dish-type solar collector using Fresnel lens,” High Temp. Press., vol. 54, no. 1, pp. 51–62, 2025, doi: 10.32908/hthp.v54.1865.
M. N. Aida et al., “Improving Solar Cell Efficiency of Silicon and Silicon Tandem Structure by Using Surface Modification,” Energy Technol., vol. 13, no. 3, Mar. 2025, doi: 10.1002/ente.202401514.
S. Hutauruk, L. Sianturi, and I. Togatorop, “Fresnel lenses and auto tracking to increase solar panel output power,” Indones. J. Electr. Eng. Comput. Sci., vol. 34, no. 2, p. 1389, May 2024, doi: 10.11591/ijeecs.v34.i2.pp1389-1398.
N. Watjanatepin and P. Sritanauthaikorn, “Rectangular module for large scale solar simulator based on high-powered LEDs array,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 20, no. 2, p. 462, Apr. 2022, doi: 10.12928/telkomnika.v20i2.23308.
Ž. Vosylius, A. Novičkovas, and V. Tamošiūnas, “Optimization of LED-Based Solar Simulators for Cadmium Telluride and Microcrystalline Silicon Solar Cells,” Energies, vol. 16, no. 15, p. 5741, Aug. 2023, doi: 10.3390/en16155741.
D. Müller et al., “Indoor Photovoltaics for the Internet-of-Things – A Comparison of State-of-the-Art Devices from Different Photovoltaic Technologies,” ACS Appl. Energy Mater., vol. 6, no. 20, pp. 10404–10414, Oct. 2023, doi: 10.1021/acsaem.3c01274.
A. F. Machado da Costa, R. A. Marques Lameirinhas, C. Pinho Correia Valério Bernardo, J. P. Neto Torres, and M. Santos, “The Modeling of Concentrators for Solar Photovoltaic Systems,” Energies, vol. 17, no. 13, p. 3201, Jun. 2024, doi: 10.3390/en17133201.
A. Asrori, P. Udianto, E. Faizal, M. A. Rizza, K. Witono, and D. Perdana, “Potential of Steam Generating by The PMMA Fresnel Lens Concentrator for Indoor Solar Cooker Application,” Period. Polytech. Mech. Eng., vol. 68, no. 2, pp. 120–129, Mar. 2024, doi: 10.3311/PPme.22547.
E. Brągoszewska, M. Bogacka, A. Wajda, and B. Milewicz, “Enhancing the efficiency of photovoltaic cells through the usage of dye concentrators,” Front. Energy Res., vol. 12, Jul. 2024, doi: 10.3389/fenrg.2024.1399020.
A. Asrori and S. H. Susilo, “The development of Fresnel lens concentrators for solar water heaters: a case study in tropical climates,” EUREKA Phys. Eng., no. 3, pp. 3–10, May 2022, doi: 10.21303/2461-4262.2022.002441.
J. Sarwar et al., “A novel configuration of a dual concentrated photovoltaic system: Thermal, optical, and electrical performance analysis,” Therm. Sci., vol. 27, no. 4 Part A, pp. 2853–2863, 2023, doi: 10.2298/TSCI220917209S.
F. L. Rashid, M. A. Al-Obaidi, A. J. Mahdi, and A. Ameen, “Advancements in Fresnel Lens Technology across Diverse Solar Energy Applications: A Comprehensive Review,” Energies, vol. 17, no. 3, p. 569, Jan. 2024, doi: 10.3390/en17030569.
C. Yu and C. Wu, “Multi‐objective optimization in roll‐to‐roll UV embossing for manufacturing linear Fresnel lenses,” Polym. Eng. Sci., vol. 65, no. 5, pp. 2624–2641, May 2025, doi: 10.1002/pen.27171.
D. Garcia et al., “Elliptical-Shaped Fresnel Lens Design through Gaussian Source Distribution,” Energies, vol. 15, no. 2, p. 668, Jan. 2022, doi: 10.3390/en15020668.
W. H. Choong, N. B. Ariffin, H. P. Yoong, B. L. Chua, and M. K. M. Shah, “Characteristics Study of Fresnel Lens Performance for Solar Concentration Application,” 2023. doi: 10.3233/ATDE230566.
M. Y. Rachedi, D. Bechki, and H. Bouguettaia, “Photovoltaic module augmented by commercial reflectors in Southern Algeria: Comparison between different reflective materials,” Acta IMEKO, vol. 12, no. 4, pp. 1–6, Dec. 2023, doi: 10.21014/actaimeko.v12i4.1608.
M. Iqbal, E. Ihsanto, and A. B. Mohammednour, “Improvement of output voltage from shading interference on solar cell using a reflector system,” J. Integr. Adv. Eng., vol. 2, no. 2, pp. 70–76, Sep. 2022, doi: 10.51662/jiae.v2i2.39.
X.-H. Hu, R. Zhang, Z. Wu, and S. Xiong, “Concentrated Solar Induced Graphene,” ACS Omega, vol. 7, no. 31, pp. 27263–27271, Aug. 2022, doi: 10.1021/acsomega.2c02159.
A. Nugraha, C. Caroline, I. Bayusari, R. Rahmawati, and H. Hermawati, “Effect of fresnel lens distance on the output power of the prowe plant solar-based electricity transistor 2N3055,” Sriwij. Electr. Comput. Eng. J., vol. 1, no. 1, pp. 37–43, Feb. 2024, doi: 10.62420/selco.v1i1.3.
Q. Shi, B. Shu, J. Jiang, and Y. Zhang, “Effect of Optical–Electrical–Thermal Coupling on the Performance of High-Concentration Multijunction Solar Cells,” Appl. Sci., vol. 12, no. 12, p. 5888, Jun. 2022, doi: 10.3390/app12125888.
P. Li, H. Wang, M. Chang, and J. Bai, “Electrical Characteristics of Photovoltaic Cell in Solar-Powered Aircraft During Cruise,” Front. Therm. Eng., vol. 2, Jul. 2022, doi: 10.3389/fther.2022.931069.
Y. Tai and T. Miyamoto, “Experimental Characterization of High Tolerance to Beam Irradiation Conditions of Light Beam Power Receiving Module for Optical Wireless Power Transmission Equipped with a Fly-Eye Lens System,” Energies, vol. 15, no. 19, p. 7388, Oct. 2022, doi: 10.3390/en15197388.
A. Konfe, B. Kabore, Y. C. Nonguierma, F. Ouedraogo, and S. Kam, “Numerical Assessment of the Thermal Efficiency of a Concentrated Photovoltaic/Thermal (CPV/T) Hybrid System Using Air as Heat Transfer Fluid,” Smart Grid Renew. Energy, vol. 15, no. 01, pp. 1–14, 2024, doi: 10.4236/sgre.2024.151001.
A. M. A. Alshibil, I. Farkas, and P. Víg, “Thermodynamical analysis and evaluation of louver-fins based hybrid bi-fluid photovoltaic/thermal collector systems,” Renew. Energy, vol. 206, pp. 1120–1131, Apr. 2023, doi: 10.1016/j.renene.2023.02.105.
T. Jiang, T. Zou, and G. Wang, “Comparative Analysis of Thermodynamic Performances of a Linear Fresnel Reflector Photovoltaic/Thermal System Using Ag/Water and Ag-CoSO4/Water Nano-Fluid Spectrum Filters,” Sustainability, vol. 15, no. 16, p. 12538, Aug. 2023, doi: 10.3390/su151612538.
A. Alhamayani, “CNN-LSTM to Predict and Investigate the Performance of a Thermal/Photovoltaic System Cooled by Nanofluid (Al2O3) in a Hot-Climate Location,” Processes, vol. 11, no. 9, p. 2731, Sep. 2023, doi: 10.3390/pr11092731.
S. G. Perez Grajales, A. H. Hernández, D. Juárez-Romero, G. Lopez Lopez, and G. Urquiza-Beltran, “Design, Construction, and Characterization of a Solar Photovoltaic Hybrid Heat Exchanger Prototype,” Processes, vol. 12, no. 3, p. 588, Mar. 2024, doi: 10.3390/pr12030588.
Mutiara Hanifah, Agoeng H. Rahardjo, and Apip Pudin, “Pengaruh Penggunaan Reflektor Datar Dengan Variasi Sudut Terhadap Daya Keluaran Panel Surya,” J. Tek. Energi, vol. 13, no. 1, pp. 47–51, Aug. 2024, doi: 10.35313/.v13i1.5263.
F. Oliveira, G. Cruz, M. Barbosa, F. Junior, R. Lima, and L. Gómez-Malagón, “A Proposal for a Solar Position Sensor System with Multifiber Optical Cable,” Sensors, vol. 24, no. 11, p. 3269, May 2024, doi: 10.3390/s24113269.
A. Livera, G. Tziolis, M. Theristis, J. S. Stein, and G. E. Georghiou, “Estimating the Performance Loss Rate of Photovoltaic Systems Using Time Series Change Point Analysis,” Energies, vol. 16, no. 9, p. 3724, Apr. 2023, doi: 10.3390/en16093724.
O. B. González, J. H. Aguilar, F. E. L. Monteagudo, R. V. Varela, A. B. Telles, and C. R. Rivas, “Design and construction of a fuzzy logic solar tracker prototype for the optimization of a photovoltaic system,” ITEGAM- J. Eng. Technol. Ind. Appl., vol. 9, no. 40, 2023, doi: 10.5935/jetia.v9i40.857.
W. P. H. Siregar, M. Fawaid, H. Abizar, M. Nurtanto, Suhendar, and Suyitno, “Reflector and passive cooler for optimization of solar panel output,” IOP Conf. Ser. Earth Environ. Sci., vol. 739, no. 1, 2021, doi: 10.1088/1755-1315/739/1/012085.
DOI: http://dx.doi.org/10.30870/vanos.v10i1.31569
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.