Antidiabetic Activities In Vitro and In Silico of Nonpolar Compounds in Patat Leaves (Phrynium capitatum)

Laras Wijayanti, Marvel Marvel, Samsul Ma’arif, Ahmad Fathoni

Abstract


One of Indonesian cultural wisdom is the use of leaves as food packaging. Apart from being used as packaging material, patat leaves are also believed to have antidiabetic benefits. Antidiabetic activity can be assessed through the enzyme α-glucosidase inhibitory activities. In this research, an in vitro and in silico analysis of antidiabetic activity was conducted on nonpolar extracts of patat leaves. In vitro analysis was conducted using the α-glucosidase enzyme inhibition method, compound analysis was conducted with the GC-MS/MS instrument, and in silico study using molecular docking method to the α-glucosidase receptor (PDB: 3W37). The results showed that the nonpolar extract (n-hexane) had very weak antidiabetic activity (with IC50 >> 100 ppm). However, the sample can inhibit the α-glucosidase enzyme activity up to 86.91%. GC-MS/MS analysis confirmed the presence of 19 compounds in the nonpolar extract of patat leaves. The compound is dominated by straight-chain hydrocarbons. The compound with the greatest abundance was Octadecyl 2,2,2-trifluoroacetate (RT 33.908; 9.53% area). From the in silico test, the compound with the most potential as antidiabetic was γ-Methylionone (40.78 μM).

Keywords


α-glucosidase, patat leaf, in silico, in vitro

References


Agilent. (2022). DB-5ms Columns, Agilent Product, Accessed: 1 July 2022. From https://www.agilent.com /en/product/gc-columns/low-bleed-gc-ms-columns/db-5ms-columns .

Ahmed, S., Ali, M. C., Ruma, R. A., Mahmud, S., Paul, G. K., Saleh, M. A., ... & Islam, M. R. (2022). Molecular docking and dynamics simulation of natural compounds from betel leaves (Piper betle L.) for investigating the potential inhibition of alpha-amylase and alpha-glucosidase of type 2 diabetes. Molecules, 27(14), 1–19. https://doi.org/10.3390/molecules27144526.

Angeloni, S., Spinozzi, E., Maggi, F., Sagratini, G., Caprioli, G., Borsetta, G., ... & Ricciutelli, M. (2021). Phytochemical profile and biological activities of crude and purified Leonurus cardiaca extracts. Plants, 10(2), 1–15. https://doi.org/10.3390/plants10020195.

Annapandian, V.M. and Sundaram, R.S. (2017). In vitro Antidiabetic Activity of Polar and Nonpolar Solvent Extracts from Leucas aspera (Willd.) Link Leaves. Pharmacognosy Research, 9, 261–265. https://doi.org/10.4103/pr.pr.

Arwansyah, A., Ambarsari, L. and Sumaryada, T.I. (2014). Simulasi Docking Senyawa Kurkumin dan Analognya Sebagai Inhibitor Reseptor Androgen pada Kanker Prostat. Current Biochemistry, 1(1), 11–19. https://doi.org/10.29244/cb.1.1.11-19.

Bendik, J., Kalia, R., Sukumaran, J., Richardot, W. H., Hoh, E., & Kelley, S. T. (2021). Automated high confidence compound identification of electron ionization mass spectra for nontargeted analysis. Journal of Chromatography A, 1660, 462656. https://doi.org/10.1016/j.chroma.2021.462656.

CambridgeSoft. (2006). Chem & Bio Draw. Cambridge Scientific Computing, Inc.

De, P., Bhayye, S., Kumar, V., & Roy, K. (2022). In silico modeling for quick prediction of inhibitory activity against 3CLpro enzyme in SARS CoV diseases. Journal of Biomolecular Structure and Dynamics, 40(3), 1010-1036. https://doi.org/10.1080/07391102.2020.1821779.

Fathoni, A. (2021). Characterization of Phytochemicals and Chemical Compounds of Patat Leaves ( Phrynium capitatum ) as Wrapping Materials for Pesor Doclang. EduChemia (Jurnal Kimia dan Pendidikan), 6(1), 13–25. https://doi.org/10.30870/educhemia.v6i1.9189.

El Hosry, L., Al Ayash, S., Matar Boumosleh, J., & Bou-Maroun, E. (2023). Chemical Composition, Antioxidant, and Anti-Diabetic Activities of Scorzonera phaeopappa Boiss. Stresses, 3(4), 773-784. https://doi.org/10.3390/stresses3040053.

Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews, 64, 4-17. https://doi.org/10.1016/j.addr.2012.09.019.

Morris, G.M. (2009). AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility’, Wiley InterScience, 7. https://doi.org/10.1002/jcc.

National Center for Biotechnology Information. (2023). PubChem Compound Summary for CID 5356787, alpha-Isomethylionone., PubChem, Accessed: 26 April 2023, https://pubchem.ncbi.nlm.nih.gov/compound/alpha-Isomethylionone

Noviadji, B.R. (2014). Desain Kemasan Tradisional Dalam Konteks Kekinian. Jurnal Fakultas Desain, 1(1), 10–21.

Obet, O., Rorong, J.A. and Fatimah, F. (2020). Skrining Fitokimia dan Aktivitas Antidiabetes dalam Ekstrak Daun Nasi (Phrynium capitatum). Jambura Journal of Chemistry, 2(2), 53–61. https://doi.org/10.34312/jambchem.v2i2.7083.

Perme, N., Choudhury, S. N., Choudhury, R., Natung, T., & De, B. (2015). Medicinal plants in traditional use at Arunachal Pradesh, India. International Journal of Phytopharmacy, 5(5), 86-98. https://doi.org/10.7439/ijpp.

Phukhatmuen, P., Raksat, A., Laphookhieo, S., Charoensup, R., Duangyod, T., & Maneerat, W. (2020). Bioassay-guided isolation and identification of antidiabetic compounds from Garcinia cowa leaf extract. Heliyon, 6(4), e03625. https://doi.org/10.1016/j.heliyon.2020.e03625.

Roman, L. and Mark, S. (2011). LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51, 2778–2786.

Shi, J., Tong, G., Yang, Q., Huang, M., Ye, H., Liu, Y., ... & Zhao, D. (2021). Characterization of key aroma compounds in tartary buckwheat (Fagopyrum tataricum Gaertn.) by means of sensory-directed flavor analysis. Journal of agricultural and food chemistry, 69(38), 11361-11371. https://doi.org/10.1021/acs.jafc.1c03708

Surowiak, A. K., Sowała, M., Talma, M., Groborz, K., Balcerzak, L., Lochyński, S., & Strub, D. J. (2022). Cytotoxicity, early safety screening, and antimicrobial potential of minor oxime constituents of essential oils and aromatic extracts. Scientific Reports, 12(1), 5319. https://doi.org/10.1038/s41598-022-09210-z.

Tagami, T., Yamashita, K., Okuyama, M., Mori, H., Yao, M., & Kimura, A. (2013). Molecular basis for the recognition of long-chain substrates by plant α-glucosidases. Journal of Biological Chemistry, 288(26), 19296-19303. https://doi.org/10.1074/jbc.M113.465211.

To, D. C., Bui, T. Q., Nhung, N. T. A., Tran, Q. T., Do, T. T., Tran, M. H., ... & Nguyen, P. H. (2021). On the inhibitability of natural products isolated from Tetradium ruticarpum towards tyrosine phosphatase 1B (PTP1B) and α-glucosidase (3W37): An in vitro and in silico study. Molecules, 26(12), 3691. https://doi.org/10.3390/molecules26123691.

Yamazaki, Y., Hayashi, Y., Arita, M., Hieda, T., & Mikami, Y. (1988). Microbial conversion of α-ionone, α-methylionone, and α-isomethylionone. Applied and environmental microbiology, 54(10), 2354-2360.




DOI: http://dx.doi.org/10.30870/educhemia.v9i1.21935

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Ahmad Fathoni, Marvel Marvel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

EduChemia Indexed by:

   

                                                                                                                                                                                                                                                 More Indecxing...                                                         

Creative Commons License

EduChemia: Jurnal Kimia dan Pendidikan is licensed under a Creative Commons Attribution 4.0 International License

________________________________________________________

EduChemia: Jurnal Kimia dan Pendidikan ISSN 2502-4778 (print) | ISSN 2502-4787 (online)
Published by Department of Chemistry Education - Universitas Sultan Ageng Tirtayasa
Address : Jl. Ciwaru Raya No. 25, Sempu, Kota Serang, Banten 42117, Indonesia
Email  : [email protected]