Green Synthesis of Dehydrozingerone (DHZ) Utilizing Ionic Liquid Medium and Microwave Irradiation
Abstract
Dehydrozingerone (DHZ), 4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one, a natural compound found in the rhizome of ginger plants (Zingiber officinale), exhibits a wide range of bioactivities, including antioxidant, anticancer, antimalarial, antidepressant, antifungal, and many other bioactivities. Conventionally, DHZ is synthesized through a cross-aldol Claisen-Schmidt condensation of vanillin and acetone, but this process often requires extended reaction times (up to 48 hours), results in low yields, and involves the excess use of organic solvents for purification. To address these limitations, this study aims to develop a green synthesis method for DHZ utilizing a 1-decyl-3-methylimidazolium bromide ([DMIM]Br) ionic liquid medium and microwave-assisted organic synthesis (MAOS) method. The experimental procedure involved optimizing the reaction conditions and varying the concentration of [DMIM]Br under microwave irradiation. Product characterization was performed by melting point determination, thin-layer chromatography (TLC), Fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR) 1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) spectroscopy. These findings indicate that the use of the [DMIM]Br ionic liquid significantly improved the purity and yield of DHZ products. The optimal conditions were synthesis from vanillin and acetone in a 1:10 molar ratio, 2.5 M NaOH, and 5% [DMIM]Br (w/v) using MAOS for 120 minutes (50°C, 300 W) to produce a 62.96% yield product in the form of a bright yellow solid with a melting point range of 129–130°C. The use of ionic liquids and MAOS provides a more efficient and environmentally friendly method for synthesizing DHZ, offering a significant reduction in reaction time and eliminating excess organic solvents, thus making it a promising alternative to traditional synthesis methods.
Keywords
Full Text:
PDFReferences
Abdelrahman, M., (2017). Synthesis, Identification and Anticonvulsant Activity of Dehydrozingerone. Gezira Journal of Engineering & Applied Science, 12(1), 31–43.
Ain, R.Q., (2018). Reaksi Kondensasi Aldol Turunan Benzaldehid dan Asetofenon dalam Medium Cairan Ion 1-Dodesil-3-Metilimidazolium Bromida – PhD thesis, Institut Teknologi Bandung, Bandung .
Auliawati, P.S., (2021). Studi Reaksi Pembentukan Senyawa Flavanon dari Intermediet Senyawa Turunan 2-Hidroksicalkon dalam Medium Cairan Ion [DMIM]Br Menggunakan Metode MAOS (Microwave Assisted Organic Synthesis) – PhD thesis, Institut Teknologi Bandung, Bandung .
Begum, F., Manandhar, S., Kumar, G., Keni, R., Sankhe, R., Gurram, P.C., Beegum, F., Teja, M.S., Nandakumar, K. & Shenoy, R.R. (2023). Dehydrozingerone promotes healing of diabetic foot ulcers: a molecular insight. Journal of Cell Communication and Signaling, 17(3), 673–688.
Formentı́n, P., Garcı́a, H., & Leyva, A. (2004). Assessment of the suitability of imidazolium ionic liquids as reaction medium for base-catalysed reactions: case of Knoevenagel and Claisen–Schmidt reactions. Journal of Molecular Catalysis A: Chemical, 214(1), 137-142.
Hampannavar, G.A., Karpoormath, R., Palkar, M.B. & Shaikh, M.S. (2016) An appraisal on recent medicinal perspective of curcumin degradant: Dehydrozingerone (DZG). Bioorganic and Medicinal Chemistry, 24(4), 501–520.
Handayani, S., Arianingrum, R., & Haryadi, W. (2011, September). Vanillin structure modification of isolated vanilla fruit (Vanilla planifolia Andrews) to form vanillinacetone. In Proceedings of 14th Asian Chemical Congress (pp. 252-257).
Hayun, H., Arrahman, A., Purwati, E.M., Yanuar, A., Fortunata, F., Suhargo, F., Syafiqah, D.W., Ignacia, C. & Novalia, A.R. (2018). Synthesis, anti-inflammatory and antioxidant activity of mannich bases of dehydrozingerone derivatives. Journal of Young Pharmacists, 10(2), s6–s10.
Kubra, I.R., Bettadaiah, B.K., Murthy, P.S. & Rao, L.J.M. (2014). Structure-function activity of dehydrozingerone and its derivatives as antioxidant and antimicrobial compounds. Journal of Food Science and Technology, 51(2), 245–255.
Kumar, V., Bala, R., Dhawan, S., Singh, P. & Karpoormath, R. (2022). The Multi‐Biological Targeted Role of Dehydrozingerone and its Analogues. ChemistrySelect, 7(35).
Mapoung, S., Mapoung, S., Suzuki, S., Fuji, S., Naiki-Ito, A., Kato, H., Yodkeeree, S., Yodkeeree, S., Sakorn, N., Sakorn, N., Ovatlarnporn, C., Ovatlarnporn, C., Takahashi, S. & Limtrakul, P. (2020). Dehydrozingerone, a Curcumin Analog, as a Potential Anti-Prostate Cancer Inhibitor in Vitro and in Vivo’, Molecules, 25(12).
Nayak, J., Devi, C. & Vidyapeeth, L. (2016). Microwave assisted synthesis : a green chemistry approach’, International Research Journal of Pharmaceutical and Applied Sciences (IRJPAS), 3(5), 278–285.
Nichols, L. (2017). Organic Chemistry Lab Technique. Butte College: LibreTexts.
Pasha, N.N. (2019). Sintesis Senyawa 3-(4-hidroksi-3-metoksifenil)-1-fenil-2-propen-1-on dalam Media Cairan Ion 1-Dodesil-3-metilimidazolium Bromida dan Metode MAOS (Microwave Assisted Organic Synthesis) – PhD thesis, Institut Teknologi Bandung, Bandung .
Perrin, C. L. and Chang, K. L. (2016). The complete mechanism of an Aldol Condensation. The Journal of Organic Chemistry, 81(13), 5631-5635.
Ruiz, K.A., López, M., Suppan, G. & Makowski, K. (2020). Crossed Aldol Reactions in Water Using Inexpensive and Easily Available Materials as a Tool for Reaction Optimization Teaching in an Undergraduate Organic Chemistry Laboratory. Journal of Chemical Education, 97(10), 3806–3809.
Santoso, R.F. (2019) Sintesis Senyawa Turunan Calkon dari Benzaldehid Melalui Metode MAOS (Microwave-Assisted Organic Synthesis) dalam Medium Cairan Ion 1-Dodseil-3-metilimidazolium bromida ([DdMim]Br) – PhD thesis, Institut Teknologi Bandung, Bandung .
Singh, S. K., & Savoy, A. W. (2020). Ionic liquids synthesis and applications: An overview. Journal of Molecular Liquids, 297, 112038.
Sirait, M.D. (2020). Sintesis Calkon dari Turunan Asetofenon dan Benzaldehid dalam Medium Cairan Ion 1-Oktil-3-Metilimidazolium Bromida dengan Metode Microwave Assisted Organic Synthesis (MAOS – PhD thesis, Institut Teknologi Bandung, Bandung .
Solomon, W.G. & Fryhe, C.B. (2011). Organic Chemistry 10th Edition. New York: John Wiley & Sons, Inc..
Wasserscheid, P., & Welton, T. (Eds.). (2008). Ionic liquids in synthesis (Vol. 1, p. 145). Weinheim: Wiley-Vch.
Yadav, G.D. & Wagh, D.P. (2020). Claisen-Schmidt Condensation using Green Catalytic Processes: A Critical Review, ChemistrySelect, 5(29), 9059–9085.
Yamano, S., Tsukuda, Y., Mizuhara, N., Yamaguchi, Y., Ogita, A. & Fujita, K.-I. (2023). Dehydrozingerone enhances the fungicidal activity of glabridin against Saccharomyces cerevisiae and Candida albicans. Letters in Applied Microbiology, 76(4).
DOI: http://dx.doi.org/10.30870/educhemia.v9i1.24414
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Annisa Mustika Pertiwi, Deana Wahyuningrum
This work is licensed under a Creative Commons Attribution 4.0 International License.
EduChemia: Jurnal Kimia dan Pendidikan is licensed under a Creative Commons Attribution 4.0 International License
________________________________________________________
EduChemia: Jurnal Kimia dan Pendidikan ISSN 2502-4779 (print) | ISSN 2502-4787 (online)
Published by Department of Chemistry Education - Universitas Sultan Ageng Tirtayasa
Address : Jl. Ciwaru Raya No. 25, Sempu, Kota Serang, Banten 42117, Indonesia
Email : [email protected]