Kemampuan pemecahan masalah matematis siswa berkemampuan awal rendah yang diberikan soal dengan teknik faded-example ditinjau dari teori Polya

Tony Sudaryana, Syamsuri Syamsuri, Sukirwan Sukirwan

Abstract


This research uses a descriptive qualitative research method with the aim of describing the characteristics of students' mathematical problem-solving abilities with low prerequisite mathematical abilities, which are given questions by applying the faded-examples technique, in terms of Polya's problem-solving theory. Based on the discussion of the results and research findings that the characteristics of students' mathematical problem solving abilities with low prerequisite mathematical abilities, which are given questions by applying the faded-examples technique, in terms of Polya's problem-solving theory can be categorized into four categories, namely: reflective, strategic, aware, and incapable. Students with the reflective category have been able to do all the problem solving steps of the Polya procedure. Students with the strategic category have been able to do the first three steps of solving the problem of the Polya procedure. Students with the category of aware are only able to do the first step of solving the problem of the Polya procedure. Students with incapable categories have not been able to do all the steps of solving the problem of the Polya procedure.

Full Text:

PDF

References


Caballero, A., Blanco, L. J., & Guerrero, E. (2011). Problem solving and emotional education in initial primary teacher education. Eurasia Journal of Mathematics, Science and Technology Education, 7(4), 281–292. https://doi.org/10.12973/ejmste/75206

Clark, R. C., Nguyen, F., & Sweller, J. (2006). Efficiency in Learning: Evidence-Based Guidlines to Manage Cognitive Load. Pfeiffer.

Gartmann, S., & Freiberg, M. (1995). Metacognition and Mathematical Problem Solving: Helping Students to Ask the Right Questions. Metacognition and Mathematical Problem Solving: Helping Students to Ask the Right Questions, 6(1).

Handayani, I. G. A., Sadra, I. W., & Ardana, I. M. (2014). Pengaruh model siklus belajar 5e berbasis pemecahan masalah terhadap kemampuan pemecahan masalah matematika ditinjau dari pengetahuan awal siswa. Jurnal Pendidikan Dan Pembelajaran Matematika Indonesia, 3(1).

Hmelo-Silver, C. E. (2004). Problem-Based Learning: What and How Do Students Learn? Educational Psychology Review, 16(3), 235–266. https://doi.org/10.1023/B:EDPR.0000034022.16470.f3

Kalyuga, S. (2008). Relative effectiveness of animated and static diagrams: An effect of learner prior knowledge. Computers in Human Behavior, 24(3), 852–861. https://doi.org/https://doi.org/10.1016/j.chb.2007.02.018

Kilpatrick, J., Swafford, J., & Bradford, F. (2005). Adding It Up: Helping Children Learn Mathematics. In Social Sciences. National Academy Press.

Leong, Y. H., Toh, T. L., Tay, E. G., Quek, K. S., & Dindyal, J. (2012). Relooking ‘Look Back’: a student’s attempt at problem solving using Polya’s model. International Journal of Mathematical Education in Science and Technology, 43(3), 357–369.

NCTM. (2000). Principles and standards for school mathematics.

Nool, N. R. (2012). Exploring the metacognitive processes of prospective mathematics teachers during problem solving. International Conference on Education and Management Innovation, 30, 302–306. http://www.ipedr.com/vol30/59-ICEMI 2012-M10059.pdf

Oktaviani, K. N., & Retnowati, E. (2018). Faded-Examples for Learning Contextual Mathematics Problem-Solving Skills. Journal of Physics: Conference Series, 1097(1). https://doi.org/10.1088/1742-6596/1097/1/012114

Özsoy, G., Kuruyer, H. G., & Çakıroğlu, A. (2015). Evaluation of students’ mathematical problem solving skills in relation to their reading levels. International Electronic Journal of Elementary Education, 8(1), 113–132.

Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive Load Theory and Instructional Design: Recent Developments. Educational Psychologist, 38(1), 1–4. https://doi.org/10.1207/S15326985EP3801_1

Pambayun, H. P., & Retnowati, E. (2018). Penerapan teknik faded examples untuk meningkatkan kemampuan pemecahan masalah materi pengayaan trigonometri SMA. Jurnal Riset Pendidikan Matematika, 5(1), 73. https://doi.org/10.21831/jrpm.v5i1.12149

Pimta, S., Tayruakham, S., & Nuangchale, P. (2009). Factors Influencing Mathematic Problem-Solving Ability of Sixth Grade Students. Journal of Social Sciences, 5(4), 381–385. https://doi.org/10.3844/jssp.2009.381.385

Polya, G. (1973). How to Solve It (2nd ed.). Princeton University Press.

Purnomo, D., Nusantara, T., Rahardjo, S., Pendidikan, D., Pascasarjana, M., & Negeri, U. (2014). Proses metakognisi matematis siswa dalam pemecahan masalah. In Prosiding Seminar Nasional Matematika Dan Pendidikan Matematika, 5(1), 67–76.

Renkl, A., Atkinson, R. K., & Große, C. S. (2004). How Fading Worked Solution Steps Works – A Cognitive Load Perspective. Instructional Science, 32(1), 59–82. https://doi.org/10.1023/B:TRUC.0000021815.74806.f6

Ruseffendi, E. T. (2006). Pengantar Kepada Membantu Guru Mengembangkan Kempetensinya dalam Pengajaran Matematika untuk Meningkatkan CBSA. Tarsito.

Schoenfeld, A. H. (2016). Learning to Think Mathematically: Problem Solving, Metacognition, and Sense Making in Mathematics (Reprint). Journal of Education, 196(2), 1–38. https://doi.org/10.1177/002205741619600202

Utami, R. W., & Wutsqa, D. U. (2017). Analisis kemampuan pemecahan masalah matematika dan self-efficacy siswa SMP negeri di Kabupaten Ciamis. Jurnal Riset Pendidikan Matematika, 4(2), 166. https://doi.org/10.21831/jrpm.v4i2.14897

Utari, R. S., Saleh, T., & Indrayanti. (2015). Pelaksanaan Pembelajaran Matematika dengan Model Project Based Learning (PBL) di Kelas X SMA Negeri 1 Indralaya. Prosiding Seminar Nasional Pendidikan: Revolusi Mental Melalui Pendidikan Hati Untuk Mewujudkan Pembelajaran Matematika Yang Menyenangkan, 309–317.

Wahyu, A., Wibowo, T., & Kurniawan, H. (2019). Analisis Kemampuan Looking Back Siswa dalam Pemecahan Masalah Matematika. Prosiding Sendika, 5(1).




DOI: http://dx.doi.org/10.48181/tirtamath.v4i1.16069

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 TIRTAMATH: Jurnal Penelitian dan Pengajaran Matematika

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional .

Tirtamath: Jurnal Penelitian dan Pengajaran Matematika. Jurnal ini diterbitkan oleh Program Studi Magister Pendidikan Matematika Universitas Sultan Ageng Tirtayasa (cetak) dan Jurnal Untirta (eprint).

Alamat Penerbit: Program Studi Magister Pendidikan Matematika Kampus FKIP Untirta Jl. Ciwaru Raya, Cipare, Kec. Serang, Kota Serang, Banten 42117Email: [email protected] |Klik untuk mengakses: Tirtamath: Jurnal Penelitian dan Pengajaran Matematika