Oxide-Based Nanocomposites for Food Packaging Application: A Review

Aisha Idris Ali, Munir Abba Dandago, Fatima Idris Ali, Genitha Immanuel, Jishnu Naskar

Abstract


Silver nanoparticles and/or nanoclay [particularly montmorillonite] are used in the majority of nanotechnology applications for food packaging. Other nanomaterials, on the other hand, can also be integrated into packaging. Metal oxide nanoparticles have been added to petroleum-based and biopolymers to produce nanocomposites with improved mechanical, barrier, antioxidants and antimicrobial properties. Nanoparticles migration from packaging, on the other hand, is a source of concern due to their potential toxicity in the human body and the environment. The purpose of this article therefore, was to review the available literature on the utilization of metal oxide-based nanoparticles to produce nanocomposites for food packaging application. Advantages of incorporating metal oxide-based nanoparticles into polymers, as well as migration of these nanomaterials from packaging into foods are discussed. Incorporation of metal oxide nanoparticles into polymers allows for the production of nanocomposites with increased mechanical strength, water and oxygen barrier properties, and can also confer other additional functional properties, such as antioxidant, antimicrobial activity and light-blocking properties. According to migration studies, only a small quantity of nanomaterial migrates from packaging into food simulants or foods, implying that consumer exposure to these nanomaterials and the health concerns associated with them are low. Nonetheless, there is a scarcity of information on the migration of nanomaterials from packaging into actual foods, and more research is desperately needed in this area. This manuscript is useful in the food industries as it indicate the applicability and potential of the oxide-based nanocomposites as a promising approach for use in food packaging applications.

Keywords


Food packaging; Metal oxide; Migration; Nanoparticles

Full Text:

PDF

References


Almasi, H., Jafarzadeh, P., Mehryar, L., 2018. Fabrication of novel nanohybrids by impregnation of CuO nanoparticles into bacterial cellulose and chitosan nanofibers: characterization, antimicrobial and release properties. Carbohydr. Polym. 186, 273–281.

Ávila-López, M.A., Luévano-Hipólito, E., Torres-Martínez, L.M., 2019. CO2 adsorption and its visible-light-driven reduction using CuO synthesized by an eco-friendly sonochemical method. Journal of Photochemistry and Photobiology A: Chemistry. 382, 111933.

Atkins, P., Overton, T., Rourke, J., Weller, M., Armstrong, F., 2006. Inorganic Chemistry (4th ed.). USA.

Arfat, Y.A., Ejaz, M., Jacob, H., Ahmed, J., 2017. Deciphering the potential of guar gum/Ag-Cu nanocomposite films as an active food packaging material. Carbohydr. Polym. 157, 65–71.

Alizadeh-Sani, M., Ehsani, A., Hashemi, M., 2017. Whey protein isolate/cellulose nanofibre/TiO2 nanoparticle/rosemary essential oil nanocomposite film: Its effect on microbial and sensory quality of lamb meat and growth of common foodborne pathogenic bacteria during refrigeration. Int J Food Microbiol. 251, 8–14.

Achachlouei, B.F., Zahedi, Y., 2018. Fabrication and characterization of CMC-based nanocomposites reinforced with sodium montmorillonite and TiO2 nanomaterials. Carbohydr Polym. 199, 415–425.

Ahmadi, R., Tanomand, A., Kazeminava, F., Kamounah, F.S., Ayaseh, A., Ganbarov, K., Yousefi, M., Katourani, A., Yousefi, B., Kafil, HS., 2019. Fabrication and characterization of a titanium dioxide (TiO2) nanoparticles reinforced bio-nanocomposite containing Miswak (Salvadora persica L.) extract – the antimicrobial, thermo-physical and barrier properties. Int J Nanomedicine. 14, 3439–3454.

Alp, E., Araz, E.C., Buluç, Ahmet, F., Güner, Y., Değer, Y., Eşgin, H., Dermenci, K.B., Kazmanlı, M.K., Turan, S., Genç, A., 2018. Mesoporous nanocrystalline ZnO microspheres by ethylene glycol mediated thermal decomposition. Adv Powder Technol. 29, 3455–3461.

Applerot, G., Perkas, N., Amirian, G., Girshevitz, O., Gedanken, A., 2009. Coating of glass with ZnO via ultrasonic irradiation and a study of its antibacterial properties. Appl. Surf. Sci. 256, S3–S8.

Bumbudsanpharoke, N., Ko, S., 2015. Nano-food packaging: An overview of market, migration research, and safety regulations. J. Food Sci. 80, R910–R923.

Bumbudsanpharoke, N., Choi, J., Ko, S., 2015. Applications of nanomaterials in food packaging. J. Nanosci. Nanotechnol. 15, 6357–6372.

Bott, J., Störmer, A., Franz, R., 2014. A model study into the migration potential of nanoparticles from plastics nanocomposites for food contact. Food Packag. Shelf Life. 2, 73–80.

Beigmohammadi, F., Peighambardoust, S.H., Hesari, J., Azadmard-Damirchi, S., Peighambardoust, S.J., Khosrowshahi, N.K., 2016. Antibacterial properties of LDPE nanocomposite films in packaging of UF cheese. LWT–Food Sci. Tech. 65, 106–111.

Bang, G., Kim, S.W., 2012. Biodegradable poly(lactic acid)-based hybrid coating materials for food packaging films with gas barrier properties. J Ind Eng Chem. 18, 1063–1068.

Bodaghi, H., Mostofi, Y., Oromiehie A., Zamani, Z., Ghanbarzadeh, B., Costad, C., Conte, A., Nobile, M., 2013. Evaluation of the photocatalytic antimicrobial effects of a TiO2 nanocomposite food packaging film by in vitro and in vivo tests. LWT–Food Sci. Tech. 50, 702–706.

Bodaghi, H., Mostofi, Y., Oromiehie, A., Ghanbarzadeh, B., Hagh, Z.G., 2015. Synthesis of clay–TiO2 nanocomposite thin films with barrier and photocatalytic properties for food packaging application. J. Appl. Polym. Sci. 132, 41764.

Bohmer-Maasa, B.W., Fonseca, L.M., Otero, D.M., Zavareze, E.d.R., Zambiazi, R.C., 2020. Photocatalytic zein-TiO2 nanofibers as ethylene absorbers for storage of cherry tomatoes. Food Package. Shelf Life. 24, 100508.

Chaudhry, Q., Michael, S., James, B., Bryony, R., Alistair, B., Laurence, C., Robert , A., Richard, W., 2008. Applications and implications of nanotechnologies for the food sector. Food Addit Contam.; Part A, 25, 241–258.

Cibert, C., Hidalgo, H., Champeaux C., Tristant, P., Dublanche-Tixier, C., Desmaison, J., Catherinot, A., 2008. Properties of aluminum oxide thin films deposited by pulsed laser deposition and plasma enhanced chemical vapor deposition. Thin Solid Films. 516, 1290–1296.

Castro-Mayorga, J.L., Rovira, M.J.F., Mas, L.C., Moragas, G.S., Cabello, J.M.L., 2018. Antimicrobial nanocomposites and electrospun coatings based on poly(3-hydroxybutyrate- co-3-hydroxyvalerate) and copper oxide nanoparticles for active packaging and coating applications. J. Appl. Polym. Sci. 135, 45673.

Cao, C., Wang, Y., Zheng S., Jie Z., Wei, L., Baobi, L., Ruijie, G., Jun, Y., 2020. Poly (butylene adipate-co-terephthalate)/titanium dioxide/silver composite biofilms for food packaging application. LWT–Food Sci. Tech. 132, 109874.

Carré, G., Erwann, H., Saïd, E., Maxime, E., Marie-Claire, L., Peter, H., Jean-Pierre, G., Valérie, K., Nicolas, K., Philippe, A., 2014. TiO2 photocatalysis damages lipids and proteins in Escherichia coli. Appl. Environ. Microbiol. 80, 2573–2581.

Chorianopoulos, N.G., Tsoukleris, D.S., Panagou, E.Z., Falaras, P., Nychas, G.J.E., 2011. Use of titanium dioxide (TiO2) photocatalysts as alternative means for Listeria monocytogenes biofilm disinfection in food processing. Food Microbiol. 28, 164–170.

Cerrada, M.L., Cristina, S., Manuel, S., Marta, F., Fernando, F., Alicia, deA., Rafael, J.J.R., Anna, K., Manuel, F., Marcos, F., 2008. Self-sterilized EVOH-TiO2 nanocomposites: Interface effects on biocidal properties. Adv. Funct. Mater. 18, 1949–1960.

Chi, H., Song, S., Luo, M., Zhang, C., Li, W., Li, L., Qin, Y., 2019. Effect of PLA nanocomposite films containing bergamot essential oil, TiO2 nanoparticles, and Ag nanoparticles on shelf life of mangoes. Scientia Horticulturae. 249, 192–198.

Colín-Chávez, C., Vicente-Ramírez, E.B., Soto-Valdez, H., Peralta, E., Auras, R., 2014. The release of carotenoids from a light-protected antioxidant active packaging designed to improve the stability of soybean oil. Food Bioproc Tech. 12, 3504–3515.

Duncan, T.V., 2011. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J. Colloid Interface Sci. 363, 1–24.

Ding, L., Xiang, L., Lecheng, H., Yunchong, Z., Yang, J., Zhiping, M., Hong, X., Bijia, W., Xueling, F., Xiaofeng, S., 2020. A naked-eye detection polyvinyl alcohol/cellulose-based pH sensor for intelligent packaging. Carbohydr. Polym. 233, 115859.

Donglu, F., Yang, W., Benard, M.K., Alfred, M.M., Zhao, L., An, X., Hu, Q., 2016. Effect of nanocomposite-based packaging on storage stability of mushrooms (Flammulina velutipes). Innov Food Sci Emerg Technol. 33, 489–497.

Dalrymple, O.K., Stefanakos, E., Trotz, M.A., Goswami, D.Y., 2010. A review of the mechanisms and modeling of photocatalytic disinfection. Applied Catalysis B: Environmental. 98, 27–38.

Díaz-Visurraga, J., Meléndrez, M.F., García, A., Paulraj, M., Cárdenas, G., 2010. Semitransparent chitosan-TiO2 nanotubes composite film for food package applications. J. Appl. Polym. Sci. 116, 3503–3515.

Delice, S., Isik, M., Gasanly, N.M., 2019. Traps distribution in sol-gel synthesized ZnO nanoparticles. Mater. Lett. 245, 103–105.

Eleftheriadou, M., Pyrgiotakis, G., Demokritou, P., 2017. Nanotechnology to the rescue: using nano-enabled approaches in microbiological food safety and quality. Curr. Opin. Biotechnol. 44, 87–93.

El-Wakil, N.A., Hassan, E.A., Abou-Zeid, R.E., Dufresne, A., 2015. Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging. Carbohydr. Polym. 124, 337–346.

Espitia, P.J.P., Soares, Nd.F.F., Coimbra, J.Sd.R., de Andrade, N.J., Cruz, R.S., Medeiros, E.A.A., 2012. Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications. Food Bioproc Tech. 5, 1447–1464.

Emamifar, A., Kadivar, M., Shahedi, M., Soleimanian-Zad, S., 2011. Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control. 22, 408–413.

El-Sayed, S.M., El-Sayed, H.S., Ibrahim, O.A., Youssef, A.M., 2020. Rational design of chitosan/guar gum/zinc oxide bionanocomposites based on Roselle calyx extract for Ras cheese coating. Carbohydr. Polym. 239, 116234.

EASAC, and JRC., 2011. Impact of engineered nanomaterials on health-considerations for benefit-risk assessment. Joint EASAC-JRC report. JRC reference report/ESAC policy report: European comission joint research centre-instuture for health and consumer protection (IHCP) and European Academies Science Advisory Councilhttps://ec.europa.eu/jrc/en/publication/reference-reports/impact-engineered-nanomaterials-healthconsiderations-benefit-risk-assessment-easac-policy-report.

EC., 2007. Commission Directive 2007/19/EC of 2 April 2007 amending Directive 2002/72/EC relating to plastic materials and articles intended to come into contact with food and Council Directive 85/572/EEC laying down the list of simulants to be used for testing migration of constituents of plastic materials and articles intended to come into contact with foodstuffs. Official Journal of the European Union, 97, 50.

EC., 2011b. Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. Official Journal of the European Union, L12, 1–89.

Echegoyen, Y., Nerín, C., 2013. Nanoparticle release from nano-silver antimicrobial food containers. Food and Chemical Toxicology. 62, 16–22.

EC., 2016. Commission Regulation (EU) 2016/1416 of 24 August 2016 amending and correcting Regulation (EU) No 10/2011 on plastic materials and articles intended to come into contact with food (Text with EEA relevance). Official Journal of the European Union, L230, 22–42.

Farhoodi, M., Mohammadifar, M.A., Mousavi, M., Sotudeh-Gharebagh, R., Emam-Djomeh, Z., 2017. Migration kinetics of ethylene glycol monomer from Pet bottles into acidic food simulant: Effects of nanoparticle presence and matrix morphology. J. Food Process Eng. 40, e12383.

Farhoodi, M., Mousavi, S.M., Sotudeh-Gharebagh, R., Emam-Djomeh, Z., Oromiehie, A., 2014. Migration of aluminum and silicon from PET/clay nanocomposite bottles into acidic food simulant. Packaging Technology and Science. 27, 161–168.

Garcia, C.V., Shin, G.H., Kim, J.T., 2018. Metal oxide-based nanocomposites in food packaging: Applications, migration, and regulations. Trends Food Sci Technol. 82, 21–31.

Guseva, C.I., Fraize-Frontier, S., Michel, C., Charles, S., 2020. Weight of epidemiological evidence for titanium dioxide risk assessment: Current state and further needs. J Expo Sci Environ Epidemiol. 30, 430–435.

Gumiero, M., Donatella, P., Andrea, P., Alessandro, S., Lucilla, I., Giuseppe, C., Rosanna, T., 2013. Effect of TiO2 photocatalytic activity in a HDPE-based food packaging on the structural and microbiological stability of a short-ripened cheese. Food Chem. 138, 1633–1640.

Guo, G., Shi, Q., Luo, Y., Rangrang, F., Liangxue, Z., Zhiyong, Q., Jie, Y., 2014. Preparation and ageing resistant properties of polyester composites modified with functional nanoscale additives. Nanoscale Res Lett. 9, 215.

Goudarzi, V., Shahabi-Ghahfarrokhi, I., Babaei-Ghazvini, A., 2017. Preparation of ecofriendly UV-protective food packaging material by starch/TiO2 bio-nanocomposite: Characterization. Int. J. Biol. Macromol. 95, 306–313.

Ghozali, M., Fahmiati, S., Triwulandari E., Witta, K.R., Donny, F., Marli, W., Widya, F., 2020. PLA/metal oxide biocomposites for antimicrobial packaging application. Polym-Plast Tech Mat. 59(12), 1332-1342.

Hoseinnejad, M., Jafari, S.M., Katouzian, I., 2018. Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit. Rev. Microbiol. 44, 161–181.

Hirvikorpi, T., Vähä-Nissi, M., Mustonen, T., Iiskola, E., Karppinen, M., 2010. Atomic layer deposited aluminum oxide barrier coatings for packaging materials. Thin Solid Films. 518, 2654–2658.

Hirvikorpi, T., Vähä-Nissi, M., Harlin A., Mikko, S., Sami, A., Juuso, T.K., Maarit, K., 2011. Enhanced water vapor barrier properties for biopolymer films by polyelectrolyte multilayer and atomic layer deposited Al2O3 double-coating. Appl. Surf. Sci. 257, 9451–9454.

Hosseini, S.N., Pirsa, S., Farzi, J., 2021. Biodegradable nanocomposite film based on modified starch-albumin/ MgO; antibacterial, antioxidant and structural properties. Polym. Test. 97, 107182.

Hasan, M.M., Zhou, Y., Mahfuz, H., Jeelani, S., 2006. Effect of SiO2 nanoparticle on thermal and tensile behavior of nylon-6. Mater. Sci. Eng. A; 429, 181–188.

Hassannia-Kolaee, M., Khodaiyan, F., Pourahmad, R., Shahabi-Ghahfarrokhi, I., 2016. Development of ecofriendly bionanocomposite: Whey proteinisolate/pullulan films with nano-SiO2. Int. J. Biol. Macromol. 86, 139–144.

Heydari-Majd, M., Ghanbarzadeh, B., Shahidi-Noghabi, M., Najafi, M.A., Hosseini, M., 2019. A new active nanocomposite film based on PLA/ZnO nanoparticle/essential oils for the preservation of refrigerated Otolithes ruber fillets. Food Packag. Shelf Life. 19, 94–103.

Ibrahim, E.M.M., Abdel-Rahman, L.H., Abu-Dief, A.M., Elshafaie, A., Hamdan, S.K., Ahmed, A.M., 2018. The synthesis of CuO and NiO nanoparticles by facile thermal decomposition of metal-Schiff base complexes and an examination of their electric, thermoelectric and magnetic properties. Mater. Res. Bull. 107, 492–497.

Ibrahim, S.A., Sreekantan, S., 2011. Effect of pH on TiO2 nanoparticles via sol-gel method. Adv Mat Res. 173, 184–189.

Indumathi, M.P., Sarojini, K.S., Rajarajeswari, G.R., 2019. Antimicrobial and biodegradable chitosan/cellulose acetate phthalate/ZnO nano composite films with optimal oxygen permeability and hydrophobicity for extending the shelf life of black grape fruits. Int. J. Biol. Macromol. 132, 1112–1120.

Jafarzadeh, S., Salehabadi, A., Jafari, S.M. 2020. Metal nanoparticles as antimicrobial agents in food packaging. Handbook of Food Nanotechnology. P. 384.

Jadhav, S., Gaikwad, S., Nimse, M., Rajbhoj, A., 2011. Copper oxide nanoparticles: Synthesis, characterization and their antibacterial activity. J. Clust. Sci. 22, 121– 129.

Jin, T., Gurtler, J.B., 2011. Inactivation of Salmonella in liquid egg albumen by antimicrobial bottle coatings infused with allyl isothiocyanate, nisin and zinc oxide nanoparticles. J. Appl. Microbiol. 110, 704–712.

Kuswandi, B., Moradi, M., 2019. Improvement of food packaging based on functional nanomaterial. Nanotechnology: Applications in energy, drug and food (pp. 309–344). Cham: Springer International Publishing.

Karunakaran, C., Manikandan, G., Gomathisankar, P., 2013. Microwave, sonochemical and combustion synthesized CuO nanostructures and their electrical and bactericidal properties. J. Alloys Compd. 580, 570–577.

Kamble, S.P., Mote, V.D., 2019. Structural, optical and magnetic properties of Co doped CuO nano-particles by sol-gel auto combustion technique. Solid State Sci. 95, 105936.

Kalia, A., Kaur, M., Shami, A., Jawandha, S.K., Alghuthaymi, M.A., Thakur, A., Abd-Elsalam, K.A., 2021. Nettle-Leaf extract derived ZnO/CuO nanoparticle-biopolymer-based antioxidant and antimicrobial nanocomposite packaging films and their impact on extending the post-harvest shelf life of guava fruit. Biomolecules. 11(2):224.

Krehula, L.K., Papić, A., Krehula, S., Gilja, V., Foglar, L., Hrnjak-Murgić ,Z., 2017. Properties of UV protective films of poly(vinyl-chloride)/TiO2 nanocomposites for food packaging. Polym. Bull. 74, 1387–1404.

Kumar, S., Boro, J.C., Ray, D., Mukherjee, A., Dutta, J., 2019. Bionanocomposite films of agar incorporated with ZnO nanoparticles as an active packaging material for shelf life extension of green grape. Heliyon. 5, e01867.

Khan, M.F., Ansari A.H., Hameedullah M., Ejaz, A., Fohad, M.H., Qamar, Z., Umair, B., Mohd, R.Z., Mohammad, M.A., Abu, M.K., Zeid, A. A., Iqbal, A., Ghulam, M.A., Gjumrakch, A., 2016. Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-antibiotics. Sci Rep. 6, 27689.

Kumaresan, N., Ramamurthi, K., Babu, R.R., Sethuraman, K., Babu, M.S., 2017. Hydrothermally grown ZnO nanoparticles for effective photocatalytic activity. Appl. Surf. Sci. 418, 138–146.

Kim, I., Viswanathan, K., Kasi, G., Sadeghi, K., Thanakkasaranee, S., Seo, J., 2019. Poly(Lactic Acid)/ZnO bionanocomposite films with positively charged ZnO as potential antimicrobial food packaging materials. Polymers. 11, 1427.

Karimi, M., Sadeghi, R., Kokini, J., 2018. Human exposure to nanoparticles through trophic transfer and the biosafety concerns that nanoparticle-contaminated foods pose to consumers. Trends in Food Science & Technology, 75, 129–145.

Llorens, A., loret, L.E., Picouet, P.A., Trbojevich, R., Fernandez, A., 2012. Metallicbased micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci Technol. 24, 19–29.

Liu X., Wang L., Qiao Y, Sun, X., Ma, S., Cheng, X., Qi, W., Huang, W., Li, Y., 2018. Adhesion of liquid food to packaging surfaces: Mechanisms, test methods, influencing factors and antiadhesion methods. J. Food Eng. 228, 102–117.

Liu, Y., Liu, Y., Wei, S., 2010. Processing technologies of EVOH/nano-SiO2 high-barrier packaging composites. Proceedings of the 17th IAPRI world conference on packaging.

Li, D., Zhang, J., Xu, W., Fu, Y., 2016. Effect of SiO2/EVA on the mechanical properties, permeability, and residual solvent of polypropylene packaging films. Polym. Compos. 37, 101–107.

Luo, Z., Xu, Y., Ye, Q., 2015b. Effect of nano-SiO2-LDPE packaging on biochemical, sensory, and microbiological quality of Pacific white shrimp Penaeus vannamei during chilled storage. Fish Sci. 81, 983–993.

Lotfi, S., Ahari, H., Sahraeyan, R., 2019. The effect of silver nanocomposite packaging based on melt mixing and sol–gel methods on shelf life extension of fresh chicken stored at 4 °C. J. Food Saf. 39(3), Article e12625.

Li, W., Li, L., Zhang, H., Yuan, M., Qin, Y., 2017a. Evaluation of PLA nanocomposite films on physicochemical and microbiological properties of refrigerated cottage cheese. J. Food Process. Preserv. 42(8), e13362.

Li, D., Ye, Q., Jiang, L., Luo, Z., 2017. Effects of nano-TiO2-LDPE packaging on postharvest quality and antioxidant capacity of strawberry (Fragaria ananassa Duch.) stored at refrigeration temperature. J. Sci. Food Agric. 97, 1116–1123.

Luo, Z., Qin, Y., Ye, Q., 2015a. Effect of nano-TiO2-LDPE packaging on microbiological and physicochemical quality of Pacific white shrimp during chilled storage. Int. J. Food Sci. Technol. 50, 1567–1573.

Li, D., Ye, Q., Jiang, L., Luo, Z., 2017b. Effects of nano-TiO2-LDPE packaging on postharvest quality and antioxidant capacity of strawberry (Fragaria ananassa Duch.) stored at refrigeration temperature. J. Sci. Food Agric. 97, 1116–1123.

Li, X., Xing, Y., Jiang, Y., Ding, Y., Li, W. 2009b. Antimicrobial activities of ZnO powder-coated PVC film to inactivate food pathogens. Int. J. Food Sci. Technol. 44, 2161–2168.

Lepot, N., Van Bael, M.K., Van den Rul, H., D'Haen, J., Peeters, R., Franco, D., Mullens, J., 2011. Influence of incorporation of ZnO nanoparticles and biaxial orientation on mechanical and oxygen barrier properties of polypropylene films for food packaging applications. J. Appl. Polym. Sci. 120, 1616–1623.

Li, S.C., Li, Y.N., 2010. Mechanical and antibacterial properties of modified nano- ZnO/high-density polyethylene composite films with a low doped content of nano- ZnO. J. Appl. Polym. Sci. 116, 2965–2969.

Li, X.H., Li, W.L., Xing, Y.G., Jiang, Y.H., Ding, Y.L., Zhang, P.P., 2011. Effects of nano-ZnO power-coated PVC film on the physiological properties and microbiological changes of fresh-cut" Fuji" apple. Adv Mat Res. 152, 450–453.

Li, W., Li, L., Cao, Y., Lan, T., Chen, H., Qin, Y., 2017. Effects of PLA film incorporated with ZnO nanoparticle on the quality attributes of fresh-cut apple. Nanomaterials. 7, 207.

Lin, Q.B., Li, H., Zhong, H.N., Zhao, Q., Xiao, D.H., Wang, Z.W., 2014. Migration of Ti from nano-TiO2-polyethylene composite packaging into food simulants. Food Additives & Contaminants: Part A, 31, 1284–1290.

Lian, Z., Zhang, Y., Zhao, Y., 2016. Nano-TiO2 particles and high hydrostatic pressure treatment for improving functionality of polyvinyl alcohol and chitosan composite films and nano-TiO2 migration from film matrix in food simulants. Innovative Food Science & Emerging Technologies. 33, 145–153.

Li W., Zhang C., Chi H., Lin, L., Tianqing, L., Peng, H., Haiyan, C., Yuyue, Q., 2017b. Development of antimicrobial packaging film made from poly (lactic acid) incorporating titanium dioxide and silver nanoparticles. Molecules, 22(7):1170.

Mihindukulasuriya, S.D.F., Lim, L.T., 2014. Nanotechnology development in food packaging: A review. Trends Food Sci Technol. 40, 149–167.

Muthulakshmi, L., Rajalu, V.A., Kaliaraj, G.S., Siengchin, S., Parameswaranpillai, J., Saraswathi, R., 2019. Preparation of cellulose/copper nanoparticles bionanocomposite films using a bioflocculant polymer as reducing agent for antibacterial and anticorrosion applications. Composites Part B: Engineering. 175, 107177.

Mirtalebi, S.S., Almasi, H., Khaledabad, A.M., 2019. Physical, morphological, antimicrobial and release properties of novel MgO-bacterial cellulose nanohybrids prepared by in-situ and ex-situ methods. Int. J. Biol. Macromol. 128, 848– 857.

Mohammadi, H., Anvar, A.A., Qajarbeygi, P., Ahari, H., Abdi, F., 2015. Comparison of the antifungal activity of titanium dioxide based nano-silver packaging and conventional polyethylene packaging in consumed bread. Appl. Food Biotechnol. 2(1), 45–51.

Nan L., Yang W., Liu Y., Hui, X., Ying, L., Manqi, L., Ke, Y., 2008. Antibacterial mechanism of copper-bearing antibacterial stainless steel against E. coli. J. Mater. Sci. Technol. 24(2), 197–201.

Nešić, A., Gordić, M., Davidović S, Željko R., Jovan, N., Irina, S., Pavel, G., 2018. Pectin-based nanocomposite aerogels for potential insulated food packaging application. Carbohydr. Polym. 195, 128–135.

Nasiri, A, Shariaty-Niasar, MSN., Akbari, Z., 2012. Synthesis of LDPE/nano TiO2 nanocomposite for packaging applications. Int. J. Nanosci. Nanotechnol. 8, 165–170.

Noshirvani, N., Ghanbarzadeh, B., Mokarram, R.R., Hashemi, M., 2017. Novel active packaging based on carboxymethyl cellulose-chitosan-ZnO NPs nanocomposite for increasing the shelf life of bread. Food Packag. Shelf Life. 11, 106–114.

Negahdari, M., Partovi, R., Talebi, F., Babaei, A., Abdulkhani, A., 2021. Preparation, characterization, and preservation performance of active polylactic acid film containing Origanum majorana essential oil and zinc oxide nanoparticles for ground meat packaging. J Food Process Preserv.45:e15013.

Oberdörster G., Maynard A., Donaldson K., Vincent, C., Julie, F., Kevin, A., Janet, C., Barbara, K., Wolfgang, K., David, L., Stephen, O., Nancy, M., David, W., Hong, Y., 2005. Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Particle and Fibre Toxicology. 2(8).

Pantani, R., Gorrasi, G., Vigliotta, G., Murariu, M., Dubois, P., 2013. PLA-ZnO nanocomposite films: Water vapor barrier properties and specific end-use characteristics. Eur. Polym. J. 49, 3471–3482.

Pina H.de.V., Farias A.J.A.de., Barbosa F.C., José Wde LS., Ana, BdeSB., Márcio, JBC., Marcus, VLF., Renate, MRW., 2020. Microbiological and cytotoxic perspectives of active PCL/ZnO film for food packaging. Mater. Res. Express. 7, 025312.

Part F., Berge N., Baran P., Anne, S., Wenjie, S., Shannon, B., Denise, M., Liang, L., Pierre, H., Peter, Q., Stephanie, C. B., Marion, H., 2018. A review of the fate of engineered nanomaterials in municipal solid waste streams. Waste Management. 75, 427–449.

Panea, B., Ripoll, G., González, J., Fernández-Cuello, Á., Albertí, P., 2014. Effect of nanocomposite packaging containing different proportions of ZnO and Ag on chicken breast meat quality. Journal of Food Engineering. 123, 104–112.

Qiu, B., Xu, X., Deng, R., Xia, G., Shang, X., Zhou, P., 2019. Construction of chitosan/ZnO nanocomposite filmby in situ precipitation. Int. J. Biol. Macromol. 122, 82–87.

Roy, S., Rhim, J.W., 2019. Melanin-mediated synthesis of copper oxide nanoparticles and preparation of functional Agar/CuO np nanocomposite films. J. Nanomater. Volume 2019, Article ID 2840517, 10 pages.

Raghavendra, G.M., Jung, J., Kim, D., Seo, J., 2017. Chitosan-mediated synthesis of flowery-CuO, and its antibacterial and catalytic properties. Carbohydr. Polym. 172, 78–84.

Rahman, P.M., Mujeeb, V.M.A., Muraleedharan, K., 2017. Flexible chitosan-nano ZnO antimicrobial pouches as a new material for extending the shelf life of raw meat. Int. J. Biol. Macromol. 97, 382–391.

Reyes-Torres, M., Mendoza-Mendoza, E., Miranda-Hernández, Á.M., Pérez-Díaz, M., Montserrat, L., Peralta-Rodríguez, R.D., Sánchez-Sánchez, R., Martínez-Gutiérrez, F., 2019. Synthesis of CuO and ZnO nanoparticles by a novel green route: Antimicrobial activity, cytotoxic effects and their synergism with ampicillin. Ceramics International. 45, 24461–24468.

Störmer, A., Bott, J., Kemmer, D., Franz, R., 2017. Critical review of the migration potential of nanoparticles in food contact plastics. Trends Food Sci Technol. 63, 39–50.

Struller, C.F., Kelly, P.J., Copeland, N.J., 2014. Aluminum oxide barrier coatings on polymer films for food packaging applications. Surf. Coat. Technol. 241, 130–137.

Swaroop, C., Shukla, M., 2019. Development of blown polylactic acid-MgO nanocomposite films for food packaging. Compos. - A: Appl. Sci. Manuf. 124, 105482.

Segura, G.E.A., Olmos, D., Lorente, A.M., Velaz, I., Gonzalez-Benito, J., 2018. Preparation and characterization of polymer composite materials based on PLA/TiO2 for antibacterial packaging. Polymers (Basel). 10(12).

Salarbashi, D., Tafaghodi, M., Bazzaz, B.S.F., 2018a. Soluble soybean polysaccharide/TiO2 bionanocomposite film for food application. Carbohydr. Polym. 186, 384–393.

Salarbashi, D., Tafaghodi, M., Bazzaz, B.S.F., Jafari, B., 2018b. Characterization of soluble soybean (SSPS) polysaccharide and development of eco-friendly SSPS/TiO2 nanoparticle bionanocomposites. Int. J. Biol. Macromol. 112, 852–861.

Salah, N., AL-Shawafi, W.M., Alshahrie, A., Baghdadi, N., Soliman, Y.M., Memic, A., 2019. Size controlled, antimicrobial ZnO nanostructures produced by the microwave assisted route. Mater. Sci. Eng. C. 99, 1164–1173.

Seray, M., Skender, A., Hadj‑Hamou, A.S., 2020. Kinetics and mechanisms of Zn2+ release from antimicrobial food packaging based on poly (butylene adipate‑co‑terephthalate) and zinc oxide nanoparticles. Polymer Bulletin. https://doi.org/10.1007/s00289-020-03145-z.

Shahabi-Ghahfarrokhi, I., Babaei-Ghazvini, A., 2019. Using photo-modification to compatibilize nano-ZnO in development of starch-kefiran-ZnO green nanocomposite as food packaging material. Int. J. Biol. Macromol. 124, 922–930.

Schmitz, F., Albuquerque, M.B.S.de., Alberton, M.D., Riegel-Vidotti, I.C., Zimmermann, L.M., 2020. Zein films with ZnO and ZnO:Mg quantum dots as functional nanofillers: New nanocomposites for food package with UV-blocker and antimicrobial properties. Polym. Test. 91, 106709.

Saba, M.K., Amini, R., 2017. Nano-ZnO/carboxymethyl cellulose-based active coating impact on ready-to-use pomegranate during cold storage. Food Chem. 232, 721–726.

Sarojini, S.K., Indumathi, M.P., Rajarajeswari, G.R., 2019. Mahua oil-based polyurethane/chitosan/nano ZnO composite films for biodegradable food packaging applications. Int. J. Biol. Macromol. 124, 163–174.

Uskoković, V., 2007. Nanotechnologies: What we do not know. Technol. Soc. 29, 43–61.

Ubani, C.A., Ibrahim, M.A., 2019. Complementary processing methods for ZnO nanoparticles. Mater. Today: Proc. 7, 646–654.

Vähä-Nissi, M., Pitkänen, M., Salo, E., Sievänen-Rahijärvi, J., Putkonen, M., Harlin, A., 2015. Atomic layer deposited thin barrier films for packaging. Cellul. Chem. Technol. 49, 575–585.

Venkatesan, R., Rajeswari, N., 2017. TiO2 nanoparticles/poly (butylene adipate-co-terephthalate) bionanocomposite films for packaging applications. Polym Adv Technol. 28(12), 1699–1706.

Vejdan, A., Ojagh, S.M., Abdollahi, M., 2017. Effect of gelatin/agar bilayer film incorporated with TiO2 nanoparticles as a UV absorbent on fish oil photooxidation. Int. J. Food Sci. Technol. 52, 1862–1868.

Venkatesan, R., Rajeswari, N., 2017. ZnO/PBAT nanocomposite films: Investigation on the mechanical and biological activity for food packaging. Polym Adv Technol. 28, 20–27.

Wyser, Y., Adams M., Avella M, David, C., Leonor, G., Gabriele, P., Monique, R., Jeroen, S., Jochen, W., 2016. Outlook and challenges of nanotechnologies for food packaging. Packag. Technol. Sci. 29, 615–648.

Wang, Y., Cen, C., Chen, J., Fu, L., 2020a. MgO/carboxymethyl chitosan nanocomposite improves thermal stability, waterproof and antibacterial performance for food packaging. Carbohydr. Polym. 236, 116078.

Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., Goetz, N.v., 2012. Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol. 46, 2242–2250.

Wang K., Jin P., Shang H., Hongmei, L., Feng, X., Qiuhui, H., Yonghua, Z., 2010. A combination of hot air treatment and nano-packing reduces fruit decay and maintains quality in postharvest Chinese bayberries. J. Sci. Food Agric. 90, 2427–2432.

Wang, J., Zhou, G., Chen C., Hongwei, Y., Tiancheng, W., Yongmei, M., Guang, J., Yuxi, G., Bai, L., Jin, S., Yufeng, L, Fang, J., Yuliang, Z., Zhifang, C., 2007. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicology Letters. 168, 176–185.

Xie, J., Hung, Y.C., 2018. UV-A activated TiO2 embedded biodegradable polymer film for antimicrobial food packaging application. LWT–Food Sci. Tech. 96, 307–314.

Youssef, A.M., El-Sayed, S.M., 2018. Bionanocomposites materials for food packaging applications: Concepts and future outlook. Carbohydr. Polym. 193, 19–27.

Yousefi, A.R., Savadkoohi, B., Zahedi, Y., Hatami, M., Ako, K., 2019. Fabrication and characterization of hybrid sodium montmorillonite/TiO2 reinforced cross-linked wheat starch-based nanocomposites. Int. J. Biol. Macromol. 131, 253–263.

Zhou, J.J., Wang, S.Y., Gunasekaran, S., 2009. Preparation and characterization of whey protein film incorporated with TiO2 nanoparticles. J. Food Sci. 74, N50–N56.

Zhang, J., Cao, C., Zheng, S., Li, W., Li, B., Xie, X., 2020. Poly(butylene adipate-co-terephthalate)/magnesium oxide/silver ternary composite biofilms for food packaging application. Food Packag. Shelf Life. 24, 100487.

Zhao Y., Chongxing H., Xingqiang H., Haohe, H., Hui, Z., Shuangfei, W., Shijie, L., 2020. Effectiveness of PECVD deposited nano-silicon oxide protective layer for polylactic acid film: Barrier and surface properties. Food Packag. Shelf Life. 25, 100513.

Zhang, X., Xiao, G., Wang, Y., Zhao, Y., Su, H., Tan, T., 2017. Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydr. Polym. 169, 101–107.

Zhang, H., Hortal, M., Jordá-Beneyto, M., Rosa, E., Lara-Lledo, M., Lorente, I., 2017. ZnO-PLA nanocomposite coated paper for antimicrobial packaging application. LWT–Food Sci. Tech. 78, 250–257.




DOI: http://dx.doi.org/10.33512/fsj.v4i2.14774

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.