Characteristics of Chips From Scales of Carp, Tilapia and Gourami Fish Using Various Coating Flours

Decky Sapuan Ramadhani, Reza Widyasaputra, Ngatirah Ngatirah

Abstract


Fish scales are waste and most of them are thrown away during processing. The components of fish scales include 70% water, 27% protein, 1% fat and 2% ash. Therefore, the scales can be used as a food product in the form of chips. Fish scales can be processed into chips due to their composition of collagen that provides structural support and flexibility to the scales. The collagen fibers within the scales can be arranged and compacted to create a thin, chip-like structure that maintains its integrity and shape. Processing of fish scale chips requires flour coating. Coating can help to bind processed fish scales together, adding structural support and preventing the chips from crumbling or breaking apart during handling and consumption. This study using a randomized complete block design with two factors. The first factor is the type of fish scales, A1 (carp fish scales), A2 (tilapia fish scales) and A3 (gourami fish scales). The second factor is the type of flour, B1 (corn starch), B2 (tapioca) and B3 (rice flour). Analysis of fish scales produced included: chemical characteristics (moisture content, ash, fat, protein), physical characteristics (colour and texture), and organoleptic preference (colour, taste, aroma and texture). The results of this study indicate that variations in the types of fish scales have a significant effect on organoleptic (colour and taste), organoleptic (aromatic) significant effect. However, it did not significantly affect the moisture content, ash content, fat content, protein content, total colour difference, texture (hardness, fracture, chewiness, and cohesiveness), and organoleptic (texture). Variations in the type of flour have a significant effect on organoleptic (colour), significantly affect texture (fracture) organoleptic (taste). However, it did not significantly affect the moisture content, ash content, fat content, protein content, color, texture (hardness, chewiness, and cohesiveness), organoleptic (aromatic, and texture). The rice flour gourami scale chips and rice flour carp scale chips produced comply with SNI 8644:2018 except for the fat content. The recommended treatment is fish scale chips from gourami fish scales coated with rice flour.


Keywords


Carp scales, Chips, Fluor type, Gourami scales, Texture, Tilapia scales

Full Text:

PDF

References


Abdullah, A. H. D., Chalimah, S., Primadona, I., & Hanantyo, M. H. G. (2018). Physical and chemical properties of corn, cassava, and potato starchs. IOP Conf. Ser. Earth Environ. Sci., 160(1). https://doi.org/10.1088/1755-1315/160/1/012003

Agbugui, M. O., & Osisienemo, A. G. (2022). Biomimetics of Fish Scales : Value and Prospects. Sci. World J., 17(4), 495–501.

Aleman, R. S., Paz, G., Morris, A., Prinyawiwatkul, W., Moncada, M., & King, J. M. (2021). High protein brown rice flour, tapioca starch & potato starch in the development of gluten-free cupcakes. Lwt, 152(June), 112326. https://doi.org/10.1016/j.lwt.2021.112326

Anggraeni, D. A., Widjanarko, S. B., & Ningtyas, D. W. (2014). Proporsi tepung porang (Amorphophallus muelleri Blume) : Tepung maizena terhadap karakteristik sosis ayam. Jurnal Pangan Dan Agroindustri, 2(3), 214–223.

Bangabandhu, A., Mujibur, S., Rahman, S., Alam, N., Akter, S., Wahidur Rahman Majumder, M., Ashikur Rahman, M., Naher, J., & Nowsad Alam, A. (2017). Fish glue from tilapia scale and skin and its physical and chemical characters. Ijfas, 5(2), 255–257. https://www.researchgate.net/publication/315785424

Coppola, D., Lauritano, C., Esposito, F. P., Riccio, G., Rizzo, C., & de Pascale, D. (2021). Fish Waste: From Problem to Valuable Resource. Marine Drugs, 19(2), 1–39. https://doi.org/10.3390/MD19020116

de Araújo, M. V., Oliveira, G. da S., McManus, C., Vale, I. R. R., Salgado, C. B., Pires, P. G. da S., de Campos, T. A., Gonçalves, L. F., Almeida, A. P. C., Martins, G. dos S., Leal, I. C. R., & dos Santos, V. M. (2023). Preserving the Internal Quality of Quail Eggs Using a Corn Starch-Based Coating Combined with Basil Essential Oil. Processes, 11(6), 1612. https://doi.org/10.3390/pr11061612

Guo, B., Hu, X., Deng, F., Wu, J., Luo, S., Chen, R., & Liu, C. (2020). Supernatant starch fraction of corn starch and its emulsifying ability: Effect of the amylose content. Food Hydrocolloids, 103(December 2019), 105711. https://doi.org/10.1016/j.foodhyd.2020.105711

Hamarashid, S. (2020). Effect of Rice Flour Addition on Batter Quality and Oil Absorption of Deep-Fat Fried Potato Strips. Journal of Food and Dairy Sciences, 11(9), 247–250. https://doi.org/10.21608/jfds.2020.118361

Hikmah, H., Kartina, K., & Nahariah, N. (2019). Organoleptic Quality of Egg Chips at Various Types and Levels of Fillers. Hasanudin J. Anim. Sci., 5(1), 1–9. https://doi.org/10.20956/hajas.v5i1.21379

Hsieh, C. F., Liu, W., Whaley, J. K., & Shi, Y. C. (2019). Structure, properties, and potential applications of waxy tapioca starches – A review. Trends Food Sci. Technol., 83, 225–234. https://doi.org/10.1016/j.tifs.2018.11.022

Junianto, Shabastiano, H. M., Aulia, L. N., Hadiana, F., & Rahmaniar, A. (2022). Utilization of Fish Scales for Non-Food Products : A Review. Asian J. Fish. Aquat., 20(5), 45–50. https://doi.org/10.9734/ajfar/2022/v20i5508

Junianto, J., Cantika, F. Z., Januaristy, D. C., Shidqi, F. L., Velya, W., Putri, L., & Taking, S. Bin. (2022). Review Article: Utilization of fish scales for food products. Global Scientific Journals, 10(11), 27–35.

Lee, T. C., Mohd Pu’ad, N. A. S., Alipal, J., Muhamad, M. S., Basri, H., Idris, M. I., & Abdullah, H. Z. (2022). Tilapia wastes to valuable materials: A brief review of biomedical, wastewater treatment, and biofuel applications. Mater. Today Proc. 57(March), 1389–1395. https://doi.org/10.1016/j.matpr.2022.03.174

Lumanlan, J. C., Fernando, W. M. A. D. B., & Jayasena, V. (2020). Mechanisms of oil uptake during deep frying and applications of predrying and hydrocolloids in reducing fat content of chips. Int. J. Food Sci. Tech., 55(4), 1661–1670. https://doi.org/10.1111/ijfs.14435

Mabee, P. M., Crotwell, P. L., Bird, N. C., & Burke, A. C. (2002). Evolution of median fin modules in the axial skeleton of fishes. J. exp. zool., 294(2), 77–90. https://doi.org/10.1002/jez.10076

Matmaroh, K., Benjakul, S., Prodpran, T., Encarnacion, A. B., & Kishimura, H. (2011). Characteristics of acid soluble collagen and pepsin soluble collagen from scale of spotted golden goatfish (Parupeneus heptacanthus). Food Chem., 129(3), 1179–1186. https://doi.org/10.1016/j.foodchem.2011.05.099

Nakamura, S., Yamaguchi, H., Benitani, Y., & Ohtsubo, K. (2020). Development of a novel formula for estimating the amylose content of starch using japonica milled rice flours based on the iodine absorption curve. Biosci. Biotechnol. Biochem,, 2347–2359. https://doi.org/10.1080/09168451.2020.1794786

Nurjanah, N., Suwandi, R., & Yogaswari, V. (2010). Karakteristik kimia dan fisik sisik ikan gurami (Osphronemus gouramy). Akuatik, 4(2), 7–12.

Olakunle Moses, M., & Olanrewaju, J. (2018). Chemical properties of corn starch as influenced by sprouting periods. Int. J. Food Sci. Nutr., 3(6), 90–94. www.foodsciencejournal.com

Oppong, D., Panpipat, W., & Chaijan, M. (2021). Chemical, physical, and functional properties of Thai indigenous brown rice flours. PLoS ONE, 16(8 August), 1–17. https://doi.org/10.1371/journal.pone.0255694

Qin, D., Bi, S., You, X., Wang, M., Cong, X., Yuan, C., Yu, M., Cheng, X., & Chen, X. G. (2022). Development and application of fish scale wastes as versatile natural biomaterials. Chem. Eng. J., 428(June 2021), 131102. https://doi.org/10.1016/j.cej.2021.131102

Quan, H., Yang, W., Lapeyriere, M., Schaible, E., Ritchie, R. O., & Meyers, M. A. (2020). Structure and Mechanical Adaptability of a Modern Elasmoid Fish Scale from the Common Carp. Matter, 3(3), 842–863. https://doi.org/10.1016/j.matt.2020.05.011

Rajabimashhadi, Z., Gallo, N., Salvatore, L., & Lionetto, F. (2023). Collagen Derived from Fish Industry Waste: Progresses and Challenges. Polymers, 15(544), 1–28. https://doi.org/10.3390/polym15030544

Ronie, M. E., & Hasmadi, M. (2022). Factors affecting the properties of rice flour: a review. Food Res., 6(6), 1–12. https://doi.org/10.26656/fr.2017.6(6).531

Salindeho, N., Mokolensang, J. F., Manu, L., Taslim, N. A., Nurkolis, F., Gunawan, W. Ben, Yusuf, M., Mayulu, N., & Tsopmo, A. (2022). Fish scale rich in functional compounds and peptides: A potential nutraceutical to overcome undernutrition. Front. nutr., 9(1072370), 1-. https://doi.org/10.3389/fnut.2022.1072370

Sari, R. N., Suryaningrum, T. D., Ayudiarti, D. L., Hastarini, E., Suryanti, & Fransisca, D. (2021). Conversion of fisheries processing by-product into salted-egg fish skin chips. IOP Conf. Ser. Earth Environ. Sci., 733(1), 1–8. https://doi.org/10.1088/1755-1315/733/1/012117

Yu, J. K., & Moon, Y. S. (2022). Corn starch: Quality and quantity improvement for industrial uses. Plants, 11(1), 1–9. https://doi.org/10.3390/plants11010092

Yuliani, Y., Marwati, M., Wardana, H., Emmawati, A., & Candra, K. P. (2018). Karakteristik Kerupuk Ikan Dengan Substitusi Tepung Tulang ikan gabus (Channa striata) sebagai fortifikasi kalsium. JPHPI, 21(2), 258–265.

Yusuf, N., Purwaningsih, S., & Trilaksani, W. (2012). Formulasi tepung pelapis savory chips ikan nike (Awaous melanocephalus). JPHPI, 15(1), 35–44.

Zainuddin, A. (2019). Analysis Of Gelatine Cornmeal To Making Pasta Fettuccine. Jurnal Agropolitan, 3(3), 1–8.

Zhang, Y., Tu, D., Shen, Q., & Dai, Z. (2019). Fish scale valorization by hydrothermal pretreatment followed by enzymatic hydrolysis for gelatin hydrolysate production. Molecules, 24(16), 1–14. https://doi.org/10.3390/molecules24162998

Zu, X. Y., Li, M. J., Xiong, G. Q., Cai, J., Liao, T., & Li, H. L. (2023). Silver Carp (Hypophthalmichthys molitrix) Scales Collagen Peptides (SCPs): Preparation, Whitening Activity Screening and Characterization. Foods, 12(7). https://doi.org/10.3390/foods12071552




DOI: http://dx.doi.org/10.33512/fsj.v6i2.25352

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.