Production and Quality Evaluation of Functional Burgers From Monodora myristica (Gaertn.) Dunal and African Breadfruit

Anna Ngozi Agiriga, Maduebibisi Ofo Iwe

Abstract


Functional burgers were produced from Monodora myristica-African breadfruit blends and toasted African breadfruit seeds. Flour was produced from Monodora myristica seeds and the flour was defatted. African breadfruit seeds were divided into two parts; the first was processed into flour after parboiling and dehulling, and the second was toasted and dehulled. Composite flour was produced from Monodora myristica and African breadfruit in the ratio of MA90:10, MA80:20, MA70:30, MA60:40, and MA50:50 respectively. 100% wheat flour (WF100) was the control. The toasted breadfruit seeds were coated with Monodora myristica-African breadfruit blends and baked. The control was African breadfruit seeds coated with 100% wheat flour (SWF100). The proximate composition, and functional properties of the blends; proximate composition, mineral content, and sensory properties of the burgers were all determined using standard methods. Data were statistically analyzed using SPSS version 20. The crude protein, fiber, ash, fat, foaming capacity, and emulsion capacity, of the blends increased as Monodora myristica level increased but carbohydrate reduced. The blends' water and oil absorption capacities increased as African breadfruit flour increased. The protein, ash, fat, fiber, phosphorus, magnesium, calcium, and iron content of burgers increased with increased inclusion of Monodora myristica flour and carbohydrate reduced. Burgers from WF100 had the least value in all the nutritional attributes analyzed but the highest carbohydrate. The composite burgers had superior nutritional properties than 100% wheat flour burgers. They also compared favorably with SWF100 in all the sensory attributes assessed. Burgers produced from MA60:40 were most preferred in terms of overall acceptability.

Keywords


African breadfruit seeds, Composite flour, Functional properties, Monodora myristica seeds, Snack foods,

Full Text:

PDF

References


Adeleke, A.E., Sangoremi, A.A., Adegbite, S.A. 2019. Chemical composition and functional properties of Caesalpina bonduc and Monodara myristica seed flours. Int. J. Environ., Agric. Biotechno. 4(1), 10-14. https://doi.org/10.22161/IJEAB/4.1.2

Adeleke, R.O., Odedeji, J.O. 2010. Functional properties of wheat and sweet potato flour blends. Pak. J. Nutr. 9(6), 535–538.

Agiriga, A.N., Iwe, M.O., Uzochukwu, S.V.A., Olaoye, O.A. 2023. Oxidative and frying stabilities of Monodora myristica (Gaertn.) Dunal seed oil of Nigerian origin. J. Fd Qua. Haz. Cont. 10, 29-38. https://doi.org/10.18502/jfqhc.10.1.11987

Agiriga, A.N., Muthulisi, S. 2018b. The effect of thermal processing on the protein quality of Monodora myristica (Gaertn.) Dunal seeds. Acta Sci. Pol. Technol. Alimen. 17(4), 321–333. https://doi.org/10.17306/J.AFS.2018.0588

Agiriga, A.N., Siwela, M. 2018a. Effects of thermal processing on the nutritional, anti-nutrient, and in-vitro antioxidant profile of Monodora myristica (Gaertn.) Dunal seeds. Prev. Nutri. Fd Sci. 23, 235-244. https://doi.org/10.3746/pnf.2018.23.3.235

Agu, H.O., Ihionu, J.C., Mba, J.C. 2023. Sensory and physicochemical properties of biscuit produced from blends of whole wheat, soy okara and tigernut residue flours. Heliyon, 9, 1-13.

Akubor, P.I., Isolokwu, P.C., Ugbane, O., Onimawo, I. 2000. Proximate composition and functional properties of African breadfruit kernel and wheat flour. Fd Res. Inter. 33, 707-712. https://doi.org/10.1016/S0963-9969(00)00116-2.

Anwar, F., Kamal, G.M., Nadeem, F., Shabir, G. 2016. Variations of quality characteristics among oils of different soybean varieties. J. King Saud Univ.-Sci. 28(4), 332-338. https://doi.org/10.1016/j.jksus.2015.10.001

AOAC 2015. Official methods of analysis (25th edition). Association of Official Analytical Chemists. Washington, D.C. USA. 2015.

Ayoade, G.W., Aderibigbe, A.D., Amoo, I.A. 2015. Effects of different processing operations on chemical composition and functional properties of African breadfruit (Treculia Africana) seed. Fd Sci. Nutr. 2(6), 180-185.

Badifu, G.I.O., Akubor, P.I., Akpapunam, A. 2000. Chemical, functional and organoleptic evaluation of African breadfruit (Treculia Africana) kernel flour for making cookies. Tanz. J. Agric. Sci. 3(1), 31-38.

Bashir, M., Ibrahim, A., Idi, A., Abdulmalik, M. 2022. Proximate composition, sensory evaluation and production of cookies (biscuit) from finger millet and wheat flour. FUDMA J. Sci. 6(1), 1 -6. https://doi.org/10.33003/fjs2022-0601-862

Bilge, G., Sezer, B., Eseller, K.E., Berberoglu, H., Koksel, H., Boyaci, I.H. 2016. Ash analysis of flour sample by using laser-induced breakdown spectroscopy. Spectro. Acta Part B: Atomic Spectro. 124, 74-78. https://doi.org/10.1016/j.sab.2016.08.023

Chandra, S., Singh, S., Kumari, D. 2015. Evaluation of functional properties of composite flours and sensorial attributes of composite flour biscuits. J. Fd Sci. Techno. 52(6), 3681-3688. https://doi.org/10.1007/s13197-014-1427-2

Cormick, G., Belizán, J.M. 2019. Calcium intake and health. Nutrients, 11(7), 1606. https://doi.org/10.3390/nu11071606

Dzandu, B., Kumi, S., Addo, T.A. 2023. Quality assessment of gluten-free cookies from rice and Bambara groundnut flour. CYTA J. Fd. 21(1), 258–268. https://doi.org/10.1080/19476337.2023.2190792

Fasasi, O., Eleyinmi, A., Oyarekua M. 2007. Effect of some traditional processing operations on the functional properties of African breadfruit seed (Treculia Africana) flour. LWT - Fd Sci. Techno. 40(3), 513-519. https://doi.org/10.1016/j.lwt.2005.11.009

Frances, E.C., Johnson, O.O. 2022. Assessment of proximate, vitamins and minerals of African breadfruit seed (Treculia africana). J. Glo. Eco. Enviro. 16(2), 28–36. https://doi.org/10.56557/jogee/2022/v16i27677

Giami, S.Y., Adindu, M.N., Akusu, M.O., Emelike, J.N.T. 2000. Compositional, functional and storage properties of flours from raw and heat processed African breadfruit (Treculia Africana Decne) seeds. Plant Fds Hum. Nutri.55, 357-368.

Godswill, A.C. 2019. Proximate composition and functional properties of different grain flour composites for industrial applications. Inter. J. Fd Sci. 2(1), 43-64. https://doi.org/10.47604/ijf.1010

Gohi, B.F.C.A., Du, J., Zeng, H.Y., Cao, X.J., Zou, K.M. 2019. Microwave pretreatment and enzymolysis optimization of the lotus seed protein. Bioengin. 6(2), 28. https://doi.org/10.3390/bioengineering6020028.

Gómez-Favela, M.A., Reyes-Moreno, C., Milán-Carrillo, J., Partida-Preciado, R.A., Espinoza-Moreno, R.J., Preciado-Ortiz, R., Gutiérrez-Dorado, R. 2021. Gluten-free healthy snack with high nutritional and nutraceutical value elaborated from a mixture of extruded underutilized grains (quality protein maize/tepary bean). Acta Univer. 31, e 3024. http://doi.org/10.15174.au.2021.3024

Hess, J.M., Slavin, J.L. 2018. The benefits of defining snacks. Phys. Behav. 193, 284–287. https://doi.org/10.1016/j.physbeh.2018.04.019

Ihemeje, A.1., Akujobi, I.C, Ofoegbu, D.C. 2022. Nutrient and organoleptic assessment of snacks produced from wheat and African breadfruit (Treculia Africana). J. Agric. Fd Sci. 20(2), 155-171. https://doi.org/10.4314/jafs.v20i2.10

Iwe, M.O. 2010. Handbook of Sensory Methods and Analysis: 2nd ed. Rojoint Communication Services Ltd., Enugu, Nigeria. 2010. pp. 31-33. ISBN: 978-32124-8-6

Iwe, M.O., Onyeukwu, U., Agiriga, A.N. 2016. Proximate, functional and pasting properties of FARO 44 rice, African yam bean and brown cowpea seeds composite flour. Cogent Fd Agric. 2(1), 1142409. https://doi.org/10.1080/23311932.2016.1142409

Jideani, V., Onwubali, F. 2009. Optimisation of wheat-sprouted soybean flour bread using response surface methodology. Afri. J. Biotechnol. 8(22), 6364-6373.

Laroche, M., Perreault, V., Marciniak, A., Gravel, A., Chamberland, J., Doyen, A. 2019. Comparison of conventional and sustainable lipid extraction methods for the production of oil and protein isolate from edible insect meal. Fds, 8(11), 572. https://doi.org/10.3390/foods8110572

Leohr. J., Kjellsson, M.C. 2020. Sweet/fat preference taste in subjects who are lean, obese and very obese. Pharma. Res. 37(12), 1-10. https://doi.org/10.1007/s11095-020-02968-9

Ndife, J., Abasiekong, K.S., Nweke, B., Linus-Chibuezeh, A., Ezeocha, V.C. 2020. Production and comparative quality evaluation of chin - chin snacks from maize, soybean and orange fleshed sweet potato flour blends. FUDMA J. Sci. 4(2), 300 -307. https://doi.org/10.33003/fjs-2020-0402-220

Nkwocha, C.C., Okagu, I.U., Chibuogwu, C.C. 2019. Mineral and vitamin contents of Monodora myristica (African nutmeg) seeds from Nsukka, Enugu State, Nigeria. Pak. J. Nutr. 18, 308-314. https://doi.org/10.3923/pjn.2019.308.314

Noorfarahzilah, M., Lee, J.S., Sharifudin, M.S., Fadzelly, A.B., Hasmadi, M. 2014. Applications of composite flour in the development of food products. Int. Fd Res. J. 21, 2061–2074.

Ogungbenle, H.N., Omaejalile, M. 2010. Functional and anti-nutritional properties, in-vitro protein digestibility and amino acid composition of dehulled Afzelia Africana seeds. Pak. J. Sci. Industr. Res. 53(5), 265–270.

Oguntoyinbo, O.O., Olumurewab, J.A.V., Omoba, O.S. 2021. Physico-chemical and sensory properties of cookies produced from composite flours of wheat and banana peel flours. J. Fd Stab. 4(3), 1-21. https://doi.org/10.36400/J.Food.Stab.4.3.2021-0055

Ohizua, E.R., Adeola, A. A., Idowu, M. A., Sobukola, O. P., Afolabi, T. A., Ishola, R.O., Ayansina, S.O., Oyekale, T.O., Falomo, A. 2017. Nutrient composition, functional, and pasting properties of unripe cooking banana, pigeon pea, and sweet potato flour blends. Fd Sci. Nutri. 5(3), 750-762. https://doi.org/10.1002/fsn3.455

Ojimelukwe, P.C., Ugwuona, F.U. 2021. The traditional and medicinal use of African breadfruit (Treculia Africana Decne): an underutilized ethnic food of the Ibo tribe of South East, Nigeria. J. Ethnic Fds. 8(21), 1-13. https://doi.org/ 10.1186/s42779-021-00097-1

Okwunodulu, I.N., Mmeregini, I.P., Nwabueze, T.U. 2019. Phytochemical and anti-nutrient contents of toasted African breadfruit seeds (Treculia Africana) as influenced by dehulling. Nig. Fd J. 37(1), 1-10

Olatoye, K.K., Fapojuwo, O.O., Olorunshola, J.A., Ayorinde, J.O. 2019. Potentials of African nutmeg (Monodora myristica) as a flavourant in cookie production. Int. J. Fd Stud. 8, 1-12. https://doi.org/10.7455/ijfs/8.2.2019.a1

Oloyede, O.O., James, S., Ocheme, O.B., Chinma, C.E., Akpa, V.E. 2016. Effects of fermentation time on the functional and pasting properties of defatted Moringa oleifera seed flour. Fd Sci. Nutri. 4(1), 89–95. https://doi.org/10.1002/fsn3.262

Onweluzo, L.J.C., Odume, L. 2007). Method of extraction and demucilagination of Treculia africana: effect on composition. Nig. Fd J. 25(1), 90-99

Onwuka G.I. 2018. Food Analysis and Instrumentation: Theory and Practise. 2nd ed. Naphthali Prints: 2018: pp. 63-75. ISBN: 978047686

Taiwo, E.O., Sekinat, A.A., Adegbola, D.O., Kemisola, A.A., Joke, S.A. 2017. Chemical composition and sensory qualities of wheat-sorghum date cookies Croatian J. Fd Techno., Biotech. Nutri. 12 (1-2), 71-76.

Verhoeven, A.A., Adriaanse, M.A., de Vet, E., Fennis, B.M., de Ridder, D.T. 2015. It's my party and I eat if I want to. Reasons for unhealthy snacking. Appetite, 84, 20–27. https://doi.org/10.1016/j.appet.2014.09.013

Villegas, R., Gao, Y., Dai, Q., Yang, G., Cai, H., Li, H., Zheng, W., Shu, X.O. 2009. Dietary calcium and magnesium intakes and the risk of type 2 diabetes: The Shanghai Women’s Health Study. The Ame. J. Clin. Nutri. 89(4), 1059-1067. https://doi.org/10.3945/ajcn.2008.27182

WHO 2005. World Health Organization, Make every mother and child count, World Health Organization, Geneva, Switzerland. 2005.




DOI: http://dx.doi.org/10.33512/fsj.v6i2.28660

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.