Optimal location selection for a new processing plant using supply chain and distribution network analysis
Abstract
Selecting an optimal processing plant location is a critical decision in supply chain management, directly affecting operational efficiency, cost-effectiveness, and distribution logistics. This study aims to identify the most suitable location for a new processing plant that sources raw materials from three suppliers and distributes finished products to two distribution points. We employed the Center-of-Gravity method to determine the optimal geographical location and a cost-minimization model to ensure minimal transportation expenses. We analyzed data on supply capacities, demand requirements, transportation costs, and geographical coordinates. The Center-of-Gravity calculations identified an optimal location at coordinates (24.67, 19.50). Further cost-optimization modeling revealed that this location reduces total transportation costs to NGN 80,500.00, yielding lower costs than alternative sites. These findings confirm that an optimally selected plant location significantly lowers logistics costs and enhances supply chain efficiency. This study underscores the effectiveness of integrating quantitative techniques in facility location decisions. To further refine such analyses, future research could incorporate real-time traffic data, infrastructure availability, and environmental factors. These insights offer valuable guidance for industries seeking cost-efficient, strategically positioned processing facilities.
Keywords
Full Text:
PDFReferences
J. W. Park, H. Y. Oh, D. Y. Kim, dan Y. J. Cho, “Plant location selection for food production by considering the regional and seasonal supply vulnerability of raw materials,” Math. Probl. Eng., vol. 2018, p. 7494398, 2018, doi: 10.1155/2018/7494398.
M. Azizi, N. Mohebbi, R. M. Gargari, dan M. Ziaie, “A strategic model for selecting the location of furniture factories: A case study,” Int. J. Multicriteria Decis. Making, vol. 5, no. 1–2, pp. 87–108, 2015, doi: 10.1504/IJMCDM.2015.067756.
M. N. H. Suman, N. M. Sarfaraj, F. A. Chyon, dan M. R. I. Fahim, “Facility location selection for the furniture industry of Bangladesh: Comparative AHP and FAHP analysis,” Int. J. Eng. Bus. Manag., vol. 13, pp. 1–17, 2021, doi: 10.1177/18479790211030851.
V. M. Athawale, P. Chatterjee, dan S. Chakraborty, “Decision making for facility location selection using PROMETHEE II method,” Int. J. Ind. Syst. Eng., vol. 11, no. 1–2, pp. 16–30, 2012, doi: 10.1504/IJISE.2012.046653.
P. Becerra, J. Mula, dan R. Sanchis, “A conceptual framework for sustainable location, inventory and transportation problems in a supply chain context,” Ann. Oper. Res., 2025, doi: 10.1007/s10479-024-06091-8.
R. Kain dan A. Verma, “Logistics management in supply chain–An overview,” Mater. Today Proc., vol. 5, no. 2, pp. 3811–3816, 2018, doi: 10.1016/j.matpr.2017.11.634.
R. Vrijhoef dan L. Koskela, “The four roles of supply chain management in construction,” Eur. J. Purch. Supply Manag., vol. 6, no. 3–4, pp. 169–178, 2000, doi: 10.1016/S0969-7012(00)00013-7.
D. Kannan, R. Khodaverdi, L. Olfat, A. Jafarian, dan A. Diabat, “Integrated fuzzy multi criteria decision making method and multi-objective programming approach for supplier selection and order allocation in a green supply chain,” J. Clean. Prod., vol. 47, pp. 355–367, 2013, doi: 10.1016/j.jclepro.2013.02.010.
D. Pamucar, K. Chatterjee, dan E. K. Zavadskas, “Robust multi-criteria decision making methodology for real life logistics center location problem,” Artif. Intell. Rev., vol. 52, no. 4, pp. 2419–2455, 2019, doi: 10.1007/s10462-018-9638-5.
S. U. Rahman dan D. K. Smith, “Use of location-allocation models in health service development planning in developing nations,” Eur. J. Oper. Res., vol. 123, no. 3, pp. 437–452, 2000, doi: 10.1016/S0377-2217(99)00289-1.
I. N. Octaviani dan R. Miharja, “Analysis of location selection using center of gravity method for production optimization (Case Study of Sumedang Saribumi Karawang Tofu Factory),” Primanomics: J. Ekon. Bisnis, vol. 23, no. 1, pp. 1–12, 2025.
A. Vafadarnikjoo, M. A. Moktadir, S. K. Paul, dan S. M. Ali, “A novel grey multi-objective binary linear programming model for risk assessment in supply chain management,” Supply Chain Anal., vol. 2, p. 100012, 2023, doi: 10.1016/j.sca.2023.100012.
M. M. Ismail, Z. Ahmed, A. F. Abdel-Gawad, dan M. Mohamed, “Toward Supply Chain 5.0: An integrated multi-criteria decision-making models for sustainable and resilience enterprise,” Decis. Mak. Appl. Manag. Eng., vol. 7, no. 1, pp. 160–186, 2024, doi: 10.31181/dmame712024974.
M. Aruldoss, T. M. Lakshmi, dan V. P. Venkatesan, “A survey on multi-criteria decision making methods and its applications,” Am. J. Inf. Syst., vol. 1, no. 1, pp. 31–43, 2013.
I. Oubrahim dan N. Sefiani, “An integrated multi-criteria decision-making approach for sustainable supply chain performance evaluation from a manufacturing perspective,” Int. J. Prod. Perform. Manag., vol. 74, no. 1, pp. 304–339, 2025, doi: 10.1108/IJPPM-05-2023-0257.
B. Ceballos, M. T. Lamata, dan D. A. Pelta, “A comparative analysis of multi-criteria decision-making methods,” Prog. Artif. Intell., vol. 5, no. 4, pp. 315–322, 2016, doi: 10.1007/s13748-016-0093-1.
M. Ahmed, A. Dogru, C. Zhang, dan C. Meng, “Learning-based multi-criteria decision model for site selection problems,” arXiv preprint arXiv:2504.04055, 2025.
I. M. Tarigan et al., “A multi-criteria decision-making approach for warehouse location selection using TOPSIS,” J. Inf. Vis., vol. 4, no. 1, pp. 45–52, 2023, doi: 10.35870/jinova.v4i1.258.
M. Agrebi dan M. Abed, “Decision-making from multiple uncertain experts: Case of distribution center location selection,” Soft Comput., vol. 25, no. 6, pp. 4525–4544, 2021, doi: 10.1007/s00500-020-05461-y.
M. Ghafoori dan M. Abdallah, “Multi-criteria decision support model for material and supplier selection in the construction industry,” Int. J. Constr. Manag., vol. 24, no. 8, pp. 1356–1368, 2024, doi: 10.1080/15623599.2024.2327251.
E. Agarwal, K. S. Gurumoorthy, A. A. Jain, dan S. Manchenahally, “A scalable solution for the extended multi-channel facility location problem,” arXiv preprint arXiv:2304.10799, 2023.
F. Z. Grine, “Developing a multi-criteria decision making model for selecting an optimal logistic hubs location: A case study of Morocco,” in Proc. 2nd Eur. Int. Conf. Ind. Eng. Oper. Manag., Paris, France, Jul. 2018, pp. 1914–1924.
A. H. Sadeghi et al., “A mixed-integer linear formulation for dynamic modified stochastic p-median problem in a competitive supply chain network design,” arXiv preprint arXiv:2301.11502, 2023.
D. Ovalle et al., “Optimal reactive operation of general topology supply chain and manufacturing networks under disruptions,” arXiv preprint arXiv:2412.08046, 2024.
J. Žic dan S. Žic, “Multi-criteria decision making in supply chain management based on inventory levels, environmental impact and costs,” Adv. Prod. Eng. Manag., vol. 15, no. 2, pp. 151–163, 2020, doi: 10.14743/apem2020.2.357.
S. M. Mousavi, R. Tavakkoli-Moghaddam, M. Heydar, dan S. Ebrahimnejad, “Multi-criteria decision making for plant location selection: An integrated Delphi–AHP–PROMETHEE methodology,” Arab. J. Sci. Eng., vol. 38, no. 5, pp. 1255–1268, 2013, doi: 10.1007/s13369-012-0367-x.
Ö. Uygun dan A. Dede, “Performance evaluation of green supply chain management using integrated fuzzy multi-criteria decision-making techniques,” Comput. Ind. Eng., vol. 102, pp. 502–511, 2016, doi: 10.1016/j.cie.2016.02.020.
S. Ghosh, M. C. Mandal, dan A. Ray, “Green supply chain management framework for supplier selection: An integrated multi-criteria decision-making approach,” in Sustainable Logistics Systems Using AI-based Meta-Heuristics Approaches, N. J. S. Kumar, I. Jacob, dan K. Mathiyazhagan, Eds. London, U.K.: Taylor & Francis, 2023, pp. 56–70, doi: 10.1201/9781003441441-5.
A. Banasik, J. M. Bloemhof-Ruwaard, A. Kanellopoulos, G. D. H. Claassen, dan J. G. van der Vorst, “Multi-criteria decision making approaches for green supply chains: A review,” Flexible Serv. Manuf. J., vol. 30, no. 3, pp. 366–396, 2018, doi: 10.1007/s10696-016-9263-5.
O. Boutkhoum, M. Hanine, H. Boukhriss, T. Agouti, dan A. Tikniouine, “Multi-criteria decision support framework for sustainable implementation of effective green supply chain management practices,” SpringerPlus, vol. 5, no. 1, p. 757, 2016, doi: 10.1186/s40064-016-2433-2.
M. Yazdani, P. Zarate, A. Coulibaly, dan E. K. Zavadskas, “A group decision making support system in logistics and supply chain management,” Expert Syst. Appl., vol. 88, pp. 376–392, 2017, doi: 10.1016/j.eswa.2017.07.014.
A. E. Cengiz, O. Aytekin, I. Ozdemir, H. Kusan, dan A. Cabuk, “A multi-criteria decision model for construction material supplier selection,” Procedia Eng., vol. 196, pp. 294–301, 2017, doi: 10.1016/j.proeng.2017.07.201.
DOI: http://dx.doi.org/10.62870/jiss.v11i1.31534
Refbacks
- There are currently no refbacks.
is supported by