Toxicity and molecular docking approach phenolic extract of Crescentia cujete L against the enzymes glutathione peroxidase and cathepsin K

Herayati Herayati, Agus Rochmat, Lia Nurliana, Meri Yulvianti, Yeyen Maryani, Ahmad Hariri, Suaedah Suaedah

Abstract


Osteoporosis is a metabolic bone disease characterized by a decrease in bone mass, caused by a reduction in bone matrix and minerals accompanied by microarchitectural deterioration of bone tissue. Factors such as hormone production, the aging process, and the formation of free radicals due to oxidative stress by Reactive Oxygen Species (ROS) can stimulate bone resorption. The content of secondary metabolite compounds in Crescentia cujete L. has medicinal properties for diseases. Purpose: this study was to determine the phenolic compound of Crescentia cujete L which has acted as an anti-osteoporosis with the approach of docking in silico. Extraction and partitioning of Crescentia cujete L fruit extracts in this study used n-hexane and toluene solvents with the aim of obtaining phenolic group compounds, knowing the toxicity value of partition results, obtaining the structure of phenolic compounds that have the potential to be anti-osteoporosis, and validating the ability of these phenolic compounds as anti-oxidants. As a result, n-hexane and toluene extracts are known to contain elevated levels of active and toxic compounds with LC50 values of 31.79 ppm and 93.49 ppm, respectively. The phytochemical test shows the presence of phenolic groups with maximum wavelengths at 302-320 nm. Benzene acetate, trans-cinnamic acid, and propanoic acid have the lowest affinity bonds with receptor 2F8A (Glutathione peroxidase); -4.21, -4.81, and -4.72 kcal/mol. Whereas at the 3KWZ receptor (Cathepsin K); -6.0, -5.4, and -5.0 kcal/mol. Conclusion: The phenolic compound of Crescentia cujete extract L can be used as an alternative treatment for osteoporosis by inhibiting the enzymes Glutathione peroxidase and Cathepsin K

Keywords


Crescentia cujete L Fruit, Docking in Silico, Glutathion perxidase, Chatepsin K

Full Text:

PDF

References


WHO. (1994). Asessment of Fracture Risk and Its Application to Screening for Postmenopausal Osteoporosis.

Monroe, D. G., Secreto, F. J., & Spelsberg, T.C. (2003).Overview of estrogen action in osteoblasts: Role of the ligand, the receptor, and the co-regulators. J Musculoskelet Neuronal Interact. 3(4):357–62.

Setiawan, D., & Soedibyo, M. (1999). Awet muda dengan tumbuhan obat dan diet supplement. Trubus Agriwidya. 1–179 p.

Rochmat, A., Hidayati, A., Mujijah, & Suaedah. (2020). In silico study and bioactivity of flavonoid extract syzygium polyanthum (wight) walp. leaves against salmonella typhi. World Chem Eng J, 4(2):39–45. doi: http://dx.doi.org/10.48181/wcej.v4i2.10593.

Kawiyana, I. (2009). Osteoporosis patogenesis diagnosis dan penanganan terkini. J Intern Med, 10(2).

Lohning, A. E., Levonis, S. M., Williams-Noonan, B., & Schweiker, S. S. (2017). A practical guide to molecular docking and homology modelling for medicinal chemists. In: Current Topics in Medicinal Chemistry. p. 1–20.

Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular docking and structure-based drug design strategies. Molecules, vol. 20, pp. 13384–13421.

Rochmat, A., Rezaldi, F., Aditya, G., Kusmayanti, N., Maryani, Y., & Hariric, A. (2021). In-vitro activity and docking approach in silico leaf extract syzygium polyanthum (wight) walp. as a salmonella tiphy inhibitor. In: Bioshack India, editor. 1ST INTERNATIONAL CONFERENCE ON BIOINFORMATICS , COMPUTATIONAL BIOLOGY, AND BIOMEDICAL SCIENCE. Tredition GmbH Halenreie, pp. 1–47.

Lee, V. S., Chong, W. L., Sukumaran, S. D., Nimmanpipug, P., Goh, B., & Lee, L. (2020). Progress in drug discovery & biomedical science computational screening and identifying binding interaction of anti-viral and anti-malarial drugs : Toward the potential cure for SARS-CoV-2. pp. 1–9.

Kaneko, T., Ohtani, K., Kasai, R., Yamasaki, K., & Nguyen, M. D. (1997). Iridoids and iridoid glucosides from fruits of Crescentia cujete. Phytochemistry, 46(5):907–10.

Parvin, M. S., Das. N., Jahan, N., Akhter, M. A., Nahar, L., & Islam, M. E. (2015). Evaluation of in vitro anti-inflammatory and antibacterial potential of Crescentia cujete leaves and stem bark Pharmacology and Toxicology. BMC Res Notes, 8(1):1–7.

Ejelonu, B. C., Lasisi, A. A., Olaremu, A. G., & Ejelonu, O. C. (2011). The chemical constituents of calabash (Crescentia cujete). African J Biotechnol, 10(84):19631–6.

Muaja, A. D., Koleangan, H. S. J., & Runtuwene, M. R. J. (2013). Uji toksisitas dengan metode BSLT dan analisis kandungan fitokimia ekstrak daun Soyogik (Saurauia bracteosa DC) dengan metode Soxhletasi. JURNALMIPA UNSRAT, 2(2):115–8.

Kumala, S., & Sapitri, D.W. (2011). Phytochemical screening and toxicological evaluation using brine shrimp lethality test (BSLT) of some fractions of prasman leaves (Eupatorium triplinerve V) extract. Indones J Cancer Chemoprevention, 2(1):193.

Hossain, M. A., Alsabari, K. M., Weli, A. M., & Al-Riyami, Q. (2013). Gas chromatography–mass spectrometry analysis and total phenolic contents of various crude extracts from the fruits of Datura metel L. J Taibah Univ Sci, 7(4):209–15. doi: http://dx.doi.org/10.1016/j.jtusci.2013.06.004

Herdiawan, B., Rulitasari, D., Aprilianty, E. T., Khalisah, H., Choirudiniyah, N. F., & Imtiyaz, J. D. (2018). In silico potential of turmeric (Cucurma longa) as antibacterial agent for Salmonella typhi. Bioedukasi, 16(2):103.

Samykannu, G., Vijayababu, P., & Natarajan, J. (2019). Informatics in medicine unlocked substrate specificities in Salmonella typhi outer membrane protease ( PgtE ) from omptin family – An in silico proteomic approach. Informatics Med Unlocked, 16(August):100237. doi: https://doi.org/10.1016/j.imu.2019.100237

Suresh, X. (2014). In silico studies on structure prediction and inhibitory action of selected natural compounds on cell invasion protein SipB from Salmonella Typhi. Asian J Biomed Pharm Sci, 4(32):20–4.

Volkamer, A., Kuhn, D., Rippmann, F., & Rarey, M. (2012). Dogsitescorer: A web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics, 28(15):2074–5.

Donovan, J. L., Meyer, A. S., & Waterhouse, A. L. (1998). Phenolic composition and antioxidant activity of prunes and prune juice (Prunus domestica). J Agric Food Chem, 46(4):1247–52.

Diniyah, N., & Lee, S-H. (2020). Komposisi senyawa fenol dan potensi antioksidan dari kacang-kacangan: Review phenolic composition and antioxidant potential of legumes – A Review. Agroteknologi, 14(01):91–102.

Zhang, T., Zheng, J., Yu, Z., Huang, X., Zhang, Q., & Tian, X. (2018). Functional characteristics of phenolic compounds accumulated in young leaves of two subtropical forest tree species of di ff erent successional stages. Tree Physiol, 38(10):1486–501.

Kocsis, M., & Hideg, E. (2013). On the spectrophotometric determination of total phenolic and flavonoid contents on the spectrophotometric determination of total phenolic and flavonoid contents. Acta Biol Hungaria, 64(4):500–10.

Das, N., Islam, M. E., Jahan, N., Islam, M. S., Khan, A., & Islam, M. R. (2014). Antioxidant activities of ethanol extracts and fractions of Crescentia cujete leaves and stem bark and the involvement of phenolic compounds. BMC Complement Altern Med, 14(1):1–9.

Sehgal, S. A., Mannan, S., & Ali, S. (2016). Pharmacoinformatic and molecular docking studies reveal potential novel antidepressants against neurodegenerative disorders by targeting HSPB8. Drug Des Devel Ther, 10:1605–18.

Susanti, N. M. P., Saputra, D. P. D., Hendrayati, P. L., & Parahyangan, I. P. D. N., & Amarawati, G. A. K. (2019). Molecular docking likopen sebagai antiosteoporosis secara in silico. Jurnal Kimia (Journal of Chemistry), vol. 13, no. 1.

Anitha, P., Kumar, K. P., Shanmughavel, P., Nazeema, T. H., & Lalitha, G. (2020). Molecular docking analysis of phytochemicals from ethanolic extract of crescentia cujete with the auto inhibited parkin catalytic domain. Bioinformation, 16(2):189-195. doi: 10.6026/97320630016189.

Ohishi, T., & Matsuyama, Y. (2018). Minodronate for the treatment of osteoporosis. Ther Clin Risk Manag, 14:729–39.

Ukon, Y., Makino, T., Kodama, J., Tsukazaki, H., & Tateiwa, D. (2019). Molecular-based treatment strategies for osteoporosis : A literature review. Int J Mol, 20(10):1–24.

Kania, N., Widowati, W., Rahmah, F., Dewi, P., Christianto, A., & Setiawan, B. (2018). Journal of Ayurveda and Integrative Medicine Cinnamomum burmanini Blume increases bone turnover marker and induces tibia ’ s granule formation in ovariectomized rats. J Ayurveda Integr Med, 9(1):20–6.

Yamaguchi, M. (2015). The osteogenic factor p -hydroxycinnamic acid as an active component in wasabi leafstalk : role in osteoporosis prevention. Integr Food, Nutr Metab, 2(1):142–7.

Duong, L. T., Leung, A. T., & Langdahl, B. (2016). Cathepsin K Inhibition : A new mechanism for the treatment of osteoporosis. Calcif Tissue Int., 98(4):381-97. doi: 10.1007/s00223-015-0051-0.

Rey, J. R. C., Cervino, E. V., Rentero, M. L., Crespo, E. C., Álvaro, A. O., & Casillas, M. (2009). Raloxifene: Mechanism of action, effects on bone tissue, and applicability in clinical traumatology practice. Open Orthop J., 3(1):14–21.

Deal, C. L., & Draper, M. W. (2006). Raloxifene: A selective estrogen-receptor modulator for postmenopausal osteoporosis - A clinical update on efficacy and safety. Women’s Heal, 2(2):199–210.

Fujiwara, S., Hamaya, E., Sato, M., Graham-Clarke, P., Flynn, J. A., & Burge, R. (2014). Systematic review of raloxifene in postmenopausal Japanese women with osteoporosis or low bone mass (osteopenia). Clin Interv Aging, 2014 Nov 5;9:1879-93. doi: 10.2147/CIA.S70307. PMID: 25395843.

Ulčakar, L., & Novinec M. (2021). Inhibition of human cathepsins b and l by caffeic acid and its derivatives. Biomolecules, 11(1):1–9.




DOI: http://dx.doi.org/10.36055/tjst.v18i2.16658

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Teknika: Jurnal Sains dan Teknologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.