PROSES BERPIKIR DIVERGEN MATEMATIS PESERTA DIDIK DALAM MENYELESAIKAN SOAL OPEN ENDED DITINJAU DARI HABITS OF MIND

Muhammad Arif Nasrulloh, Supratman Supratman, Diar Veni Rahayu

Abstract


The purpose of this study was to describe the mathematical divergent thinking process of students in solving open-ended questions in terms of habits of mind. The research conducted is a qualitative research with exploratory methods used. The research subjects consisted of six students in the eighth grade of junior high school. The research was analyzed based on the aspects of fluency, flexibility, originality and elaboration. The results showed that: 1) Students with good habits of mind are able to carry out the work process according to the previous strategy skillfully, are able to have thoughts about something different, are able to generate ideas and ideas to design a settlement strategy without requiring a long time and are able to design and using a solution strategy with the right mathematical concepts without requiring a long time. 2) Students with moderate habits of mind are able to carry out the work process according to the previous strategy even though it still needs to be developed again, able to have thoughts about something different even though it still needs to be developed again and there are still mistakes, able to generate ideas and ideas for designing a solution strategy by re-identifying the problem repeatedly and being able to come up with a strategic plan that will be used by re-identifying the previously studied problems. 3) Students with poor habits of mind are able to carry out the work process according to the previous strategy even though there are still errors, able to have thoughts about something different even though there are still errors, able to generate ideas and ideas to design a settlement strategy by identifying return to the problem even though there are still errors in calculations and require repetition in understanding and recalling relevant material to plan problem solving strategies.

 

Keywords: Mathematical Divergent Thinking Process, Open Ended, Habits of Mind


Full Text:

PDF

References


Acar, S., Alabbasi, A. M. A., Runco, M. A., & Beketayev, K. (2019). Latency as a predictor of originality in divergent thinking. Thinking Skills and Creativity, 33, 100574.

Akmalia, N. N., Pujiastuti, H., & Setiani, Y. (2016). Identifikasi tahap berpikir kreatif matematis melalui penerapan model problem based learning dengan tugas pengajuan masalah. JPPM (Jurnal Penelitian Dan Pembelajaran Matematika), 9(2).

Altier, W. J. (1999). The thinking manager's toolbox: effective processes for problem solving and decision making. Oxford University Press.

Andriani, S., Yulianti, K., Ferdias, P., & Fatonah, S. (2017). The Effect Of Mathematical Habits Of Mind Learning Strategy Based On Problem Toward Students’mathematical Creative Thinking Disposition. International E-Journal of Advances in Education, 3(9), 689-696.

Aringga, D., Shodiqin, A., & Albab, I. U. (2019). Penelusuran Kebiasaan Berpikir (Habits of Mind) Matematis Siswa dalam Menyelesaiakan Soal Cerita Bilangan Pecahan Ditinjau dari Gaya Kognitif. Thinking Skills and Creativity Journal, 2(2), 121-129.

Becker, J. P., & Shimada, S. (1997). The Open-Ended Approach: A New Proposal for Teaching Mathematics. National Council of Teachers of Mathematics, 1906 Association Drive, Reston, VA 20191-1593.

Campbell, J. (2006). Theorising habits of mind as a framework for learning. Computer and Mathematics Science, 6, 102-109.

Campbell, P. F. (1997). Connecting instructional practice to student thinking. Teaching Children Mathematics, 4(2), 106–110.

Clements, D. H., & Sarama, J. (2011). Early childhood teacher education: The case of geometry. Journal of mathematics teacher education, 14(2), 133-148.

Dwirahayu, G., Kustiawati, D., & Bidari, I. (2017). Corresponding Habits of Mind and Mathematical Ability. In Journal of Physics: Conference Series (Vol. 895, No. 1, p. 012013).

Dwirahayu, G., Kustiawati, D., & Bidari, I. (2018). Pengaruh habits of mind terhadap kemampuan generalisasi matematis. JPPM (Jurnal Penelitian dan Pembelajaran Matematika), 11(2).

Faridah, N. S., & Ratnaningsih, N. (2019). Analisis Kemampuan Berpikir Divergen Siswa Dalam Menyelesaikan Masalah Open Ended. In Prosiding Seminar Nasional & Call For Papers.

Gams, M. A. T. J. A. Z. (2004). Computational analysis of human thinking processes. International Journal of Computational Cognition (http://www. YangSky. com/yangijcc. htm), 2(3), 1-19.

Guilford, J. P. (1959). Three faces of intellect. The American Psychologist, 14, 469–479.

Guilford, J. P. (1967). The nature of human intelligence. New York: McGraw-Hill.

Guilford, J.P. (1950). Fundamental Statistics in Psychology and Education, second ed. McGraw-Hill, New York, NY, US.

He, H., Liu, W., Yu, J., & Li, X. (2016). Extenics-based Testing Method of Divergent Thinking Quotient. Procedia Computer Science, 91, 151-157.

Hudson, L. (1968). Frames of mind: Ability, perception and self-perception in the arts and sciences. Oxford England: W. W. Norton.

Indriani, L. F., Yuliani, A., & Sugandi, A. I. (2018). Analisis Kemampuan Penalaran Matematis dan Habits Of Mind Siswa SMP Dalam Materi Segiempat Dan Segitiga. Jurnal Math Educator Nusantara: Wahana Publikasi Karya Tulis Ilmiah Di Bidang Pendidikan Matematika, 4(2), 87-94.

Kaufman, J. C., Plucker, J. A., & Baer, J. (2008). Essentials of creativity assessment. Hoboken, NJ: Wiley.

Koriyah, V. N., & Harta, I. (2015). Pengaruh open-ended terhadap prestasi belajar, berpikir kritis dan kepercayaan diri siswa SMP. Pythagoras: Jurnal Pendidikan Matematika, 10(1), 95-105.

Lewis, C., & Lovatt, P. J. (2013). Breaking away from set patterns of thinking: Improvisation and divergent thinking. Thinking Skills and Creativity, 9, 46–58. https://doi.org/10.1016/j.tsc.2013.03.001

Miliyawati, B. (2014). Urgensi strategi disposition habits of mind matematis. Infinity Journal, 3(2), 174-188.

Pehkonen, E. (1997). The state-of-art in mathematical creativity. ZDM, 29(3), 63-67.

Plucker, J. A. (1999). Is the proof in the pudding? Reanalyses of Torrance's (1958 to present) longitudinal data. Creativity Research Journal, 12(2), 103-114.

Qadarsih, N. D. (2017). Pengaruh Kebiasaan Pikiran (Habits of Mind) terhadap Penguasaan Konsep Matematika. SAP (Susunan Artikel Pendidikan), 2(2).

Rahmah, M. A., & Rohaendi, S. (2020). Peningkatan Kemampuan Berpikir Kreatif Siswa Sma Dengan Pendekatan Open Ended. JPPM (Jurnal Penelitian dan Pembelajaran Matematika), 13(1), 61-72.

Runco, M. A. (1999). Divergent thinking. In M. A. Runco, & S. Pritzker (Eds.). Encyclopedia of creativity (pp. 577–582). San Diego, CA: Academic Press.

Runco, M. A. (2003). Education for creative potential. Scandinavian Journal of Educational Research, 47, 317–324.

Runco, M. A. (2010). Divergent thinking, creativity, and ideation. The Cambridge handbook of creativity, 413, 446.

Runco, M. A., & Acar, S. (2012). Divergent thinking as an indicator of creative potential. Creativity research journal, 24(1), 1-10.

Samo, D. D. (2017). Developing Contextual Mathematical Thinking Learning Model to Enhance Higher-Order Thinking Ability for Middle School Students. International Education Studies, 10(12), 17-29.

Shettar, A., Vijaylakshmi, M., & Tewari, P. (2020). Categorizing student as a Convergent and Divergent Thinker in Problem-solving using Learning Analytics Framework. Procedia Computer Science, 172, 3-8.

Supratman, Herawati, L., & Akbar, R. E. (2019). Conjecturing Via Analogical Reasoning to Trigger Divergent and Convergent Thinking. International Journal of Innovation, Creativity and Change. Volume, 9.

Supratman. (2019). The role of conjecturing via analogical reasoning in solving problem based on Piaget’s theory. In Journal of Physics: Conference Series (Vol. 1157, No. 3, p.

Taylor, C. W. (1988). Various approaches to and definitions of creativity. In R. J. Sternberg (Ed.). The nature of creativity: Contemporary psychological perspectives (pp. 99–121). Cambridge, England: Cambridge University Press.

Torrance, E. P. (1988). The nature of creativity as manifest in its testing. The nature of creativity, 43-75.

Unal, H., & Demir, İ. (2009). Divergent thinking and mathematics achievement in Turkey: Findings from the programme for international student achievement (PISA-2003). Procedia-Social and Behavioral Sciences, 1(1), 1767-1770.

Usiskin, Z. (1982). Van Hiele Levels and Achievement in Secondary School Geometry. CDASSG Project.

Wijaya, A. (2012). Pendidikan matematika realistik suatu alternatif pendekatan pembelajaran matematika. Yogyakarta: Graha Ilmu.

Wilson, L. O. (2016). The second principle. Five Basic Types of Questions.




DOI: http://dx.doi.org/10.30870/jppm.v15i1.13409

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 JPPM (Jurnal Penelitian dan Pembelajaran Matematika)

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional .

JPPM (Jurnal Penelitian dan Pembelajaran Matematika). Jurnal ini diterbitkan oleh Jurusan Pendidikan Matematika FKIP Universitas Sultan Ageng Tirtayasa (cetak) dan Jurnal Untirta (eprint).

Alamat Penerbit: Jl. Raya Ciwaru No 25 Kota Serang Banten, Jurusan Pendidikan Matematika, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Sultan Ageng Tirtayasa, Kampus Ciwaru, Serang, Banten, Indonesia. Telepon / Faks: (0254) 280330 Ext 111, Email: [email protected] |Klik untuk mengakses: Jurnal Penelitian dan Pembelajaran Matematika